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Abstract

Although the availability of high-dimensional data sets is increasing, structural game models

have difficulty incorporating them. In this paper, I integrate double/debiased machine learning

into static games with incomplete information. I provide both estimation and inference methods

for these models and show how the popular estimation method of Bajari et al. (2010b) can be

adapted to accommodate the presence of high-dimensional nuisance parameters.

For an empirical application of the tools I develop, I study the important issue of rural

pharmacy access. I document that the decline of independent pharmacies is associated with

the entry of chains, leading to more limited pharmacy access in rural towns. This is because

independent pharmacies are more likely to be located in rural towns, whereas chain pharmacies

prefer locations with higher demand (e.g., urban areas and shopping malls) - typically farther

from rural towns. To capture strategic interactions, I model independent pharmacy entry

and exit as a static game of incomplete information. This paper finds that the effect of a

rival independent pharmacy is 50% larger using the developed methodologies than using the

method of Bajari et al. (2010b). This difference is primarily due to machine learning’s ability to

accommodate flexible functional forms and its higher predictive performance. The paper’s first

counterfactual simulation finds that new chain pharmacy entries can explain 40% of the closures

among independent pharmacies from 2000 to 2019. The second counterfactual evaluates the

effect of a subsidy program on improving limited pharmacy access, similar to the physician

bonus program for Medicare-related services that targets areas with limited medical access.

The analysis shows that 16% of rural towns previously identified as having restricted pharmacy

access would no longer be categorized as such.

Keywords: Static games; orthogonal moments; machine learning; high-dimensional data;

pharmacy access
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1 INTRODUCTION

Static games involving strategic interactions are an active area of research, including en-

try/exit games (Bresnahan and Reiss 1991, Berry 1992), quality choices (Mazzeo, 2002),

location choice models (Seim (2006)), multi-store choices (Jia 2008, Holmes 2011), networks

(Nishida, 2015), pricing strategies (Ellickson and Misra, 2008), and stock recommendations

submitted by analysts (Bajari et al., 2010b). To recover the underlying structural parame-

ters of strategic interactions, Bajari et al. (2010b) is one of the most widely used two-step

methods.1

Recently, there has been a growing interest in using high-dimensional data for empirical

research in economics and solving real-world business problems. The demand for high-

dimensional data rises due to more available large data with sparse features such as text, im-

ages, and the transformation of raw covariates such as interaction, polynomials, and splines.

Researchers are motivated to include high-dimensional control variables to address omitted

variable bias issues and allow for more flexible functional forms. However, while the afore-

mentioned Bajari et al. (2010b) establishes desirable theoretical properties and performs well

in practice using low-dimensional data, the method becomes infeasible in high-dimensional

settings where the dimension of control variables p is relatively large compared to the sample

size N .

In this context, researchers often turn to machine learning (ML) methods with regular-

ization, such as the Lasso estimator, to enable estimation with high-dimensional covariates.

However, Machine learning methods face a trade-off between bias and variance: while they

excel in prediction, they can suffer from regularization bias. For example, the Lasso estimator

is susceptible to regularization bias due to model selection errors such as selecting irrelevant

covariates or not selecting relevant covariates. Consider the setting where the model param-

eters are categorized into two groups - low-dimensional parameters of interest (e.g. rivals

effects) and high-dimensional nuisance parameters. Due to the described bias-variance trade-

off, the use of machine learning methods to estimate high-dimensional nuisance parameters

can enhance parameter prediction accuracy, but it may also transmit regularization bias in

the nuisance parameter estimates into the primary parameter of interest.

The goal of this paper is to provide a valid inference of underlying structural parameters

of interest in the presence of high-dimensional nuisance parameters estimated using machine

learning methods. I employ the framework in Chernozhukov et al. (2018b) to enable the use of

1Bajari et al. (2010b)’s estimators take two steps: (1) estimating the rival’s presence probabilities,
represented as reduced-form parameters η0, using non-parametric methods or simple logit models, and (2)
recovering the low-dimensional structural parameters θ0 based on first-stage estimates of beliefs regarding
optimal choices made by other firms.
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high-dimensional covariates in the model of strategic interaction with incomplete information

in Bajari et al. (2010b). First, I employ machine learning methods to estimate the high-

dimensional nuisance parameters including belief over competitors’ choices and the effect

of market characteristics. To prevent transmitting regularization bias in machine learning

estimates of nuisance parameters to low-dimensional structural parameters of interest, I use

two ingredients introduced in Chernozhukov et al. (2018b). I construct a moment function

that satisfies the orthogonality condition which implies that the moment condition is locally

insensitive to regularization bias in nuisance parameter estimates. In addition, I implement

a cross-fitting algorithm to avoid imposing strong restrictions on the growth of entropy and

model complexity. As long as convergence rates for ML estimators are faster than N−1/4

and regularity conditions are satisfied, the proposed estimator achieves
√
N -consistency and

asymptotic normality. Monte Carlo simulation evaluates the finite sample properties of

developed estimators.

As an empirical application, I apply my framework to study the strategic entry decisions

of independent pharmacies in rural Midwestern United States. First, I document that lim-

ited access to pharmacies in rural towns has increased over the past two decades, and this

increased trend is associated with the exit of independent pharmacies. I further present data

patterns that independent pharmacies choose to leave the market as more chain pharmacies

enter. I use event study designs to study the effect of chain pharmacy entries on the behav-

ior of independent pharmacies. After controlling for rich covariates, including socioeconomic

characteristics, health-related variables, and market-year fixed effects, I find that new entry

of chain pharmacies within 15 miles is associated with a significant decrease in the number of

independent pharmacies in town, which leads to limited accessibility of pharmacy in town.

The magnitudes of impact are larger in towns with a higher proportion of elderly residents

who are particularly vulnerable to the issue of limited access to pharmacies.

Motivated by reduced form evidence, I estimate a structural model of the static games

among independent pharmacies in the town. In this process, I use machine learning methods

to recover rival’s choice probabilities in the first stage and shed light on the benefit of using

machine learning in estimation. There are two key findings. First, compared to classical

methods in Bajari et al. (2010b), machine learning methods produce greatly improved pre-

diction power in the estimation of beliefs over rivals’ conditional choice probabilities (CCPs).

Second, as a result, the structural parameter of rivals’ interaction effects in the second stage

is around 1.5 times larger than the estimate using Bajari et al. (2010b). This change in

estimates can be primarily attributed to the ability of machine learning methods to more

accurately capture beliefs about rivals’ actions when compared to a simple conditional logit

model.
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Finally, I use the estimated model to simulate counterfactual scenarios aimed at improv-

ing pharmacy accessibility in elderly towns. The first scenario quantifies the role of new

chain pharmacy entries on the market structure of local markets by looking at how many in-

dependent pharmacies would be active in the market if the number of chain pharmacies was

fixed in the year 2000. In the absence of new chain entries after the year 2000, there would

have been 10% more independent pharmacies, compared to the observed number in 2019.

The first counterfactual simulation reveals that the new entries of chain pharmacies since

2000 can account for 40% of the variation in the closed independent pharmacies between

2000-2019.

The second scenario characterizes the equilibrium where the federal government provides

a 10% subsidy from pharmacy sales associated with Medicare beneficiaries to pharmacies.

This hypothetical subsidy program is inspired by the existing federal government’s physician

bonus program initiated in 2006 to enhance healthcare accessibility, by targeting limited

medical access areas. The counterfactual analysis reveals that with this subsidy program,

16% of towns previously categorized as having limited pharmacy access would no longer fall

into this category.

I chose retail pharmacy markets for the application of my methodology for three reasons.

First, there is little knowledge of which market characteristics are relevant to the opening

of pharmacies for econometricians. Instead of assuming that data-generating processes are

known to econometricians, I incorporate a set of rich covariates from socioeconomic and

health-related characteristics. This approach allows the data to detect which characteristics

are relevant for the underlying payoffs of pharmacies. Secondly, given that the true functional

forms of the underlying payoffs also remain unknown to econometricians, I moved away from

the assumption of straightforward linear models. I instead utilize flexible functional forms,

such as interaction terms, to capture the underlying payoffs of pharmacies. Finally, the

pharmacy’s most important strategic decision is entry/exit, which aligns with the discrete

choice of games that I develop. Pharmacies compete in relatively tight geographical mar-

kets as consumers take the location of pharmacies into consideration when deciding where to

shop. According to industry reports2, consumers take the location (distance) into account for

pharmacy choice decision, followed by the acceptance of health insurance and the quality of

services. In Appendix Figure C.1, I observe that across different types of pharmacies (inde-

pendent, chain, and, mass merchants), location consistently emerges as the most important

factor determining consumers’ pharmacy preferences. Admittedly, while health insurance

and pricing do play roles, location remains the predominant factor of consideration.3 Ap-

22018 Pharmacy Satisfaction Pulse, Pharmacy Satisfaction Data from surveys
3Based on the anecdotal, I abstract away from decisions on other dimensions - prices, product variety,
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pendix Figure C.2 reinforces this, underscoring location as the most important factor when

consumers switch pharmacies.

Literature Review. Extensive literature exists on the estimation of structural param-

eters in the context of high-dimensional data. The literature focuses on the development of

Neyman orthogonal moment functions to achieve
√
N -consistency and asymptotic normality

of the estimator (Neyman 1959, Newey 1994, Belloni et al. 2016, Chernozhukov et al. 2018a,

Chernozhukov et al. 2022, Ichimura and Newey 2022). Orthogonal moment functions have

the property that the second-stage estimations of structural parameters are insensitive to

first-stage local biases from machine learning methods. Coupled with sampling splitting,

low-dimensional structural parameters of interests θ0 follow
√
N -consistent and asymptoti-

cally normal, in the presence of high-dimensional data. The proposed orthogonal moment

condition aligns with previous literature and has desirable asymptotic properties.

This paper also relates to deriving Neyman/orthogonal moment function for discrete

choice game settings; two-stage methods (Bajari et al. 2010b, Chernozhukov et al. 2016,

Nekipelov et al. 2022), dynamic games with value function approximation approach (Bajari

et al. 2009, Adusumilli and Eckardt 2019), and partial identification (Semenova 2018). The

previous literature in Bajari et al. (2009) and Bajari et al. (2010b) suggests that the influence

function in discrete games corrects the player’s own choice probabilities. In contrast, the

orthogonal moments in this paper remove biases from the rival’s choice probabilities because

first-stage nuisance parameters include beliefs over the rival’s choice probabilities. Semenova

(2018) used partial identification for the dynamic discrete choice model whereas I provide

point identification for the static game. My work differs from Adusumilli and Eckardt (2019)

in that Adusumilli and Eckardt (2019) used the value function approximation for dynamic

models based on Reinforcement Learning. Nekipelov et al. (2022) proposed correction terms

for the two-player static game with the incomplete formation. My paper differs from theirs

in several ways. First, as I allow firm-level shifters for the identification, it requires new

correction terms, which differ from Nekipelov et al. (2022). 4 Second, this paper accommo-

dates multiple players whereas Nekipelov et al. (2022) ’s sketch includes two players’ cases.

Finally, while Nekipelov et al. (2022) requires the use of the loss function in the second stage,

this paper uses the generalized method of moment.

The empirical application in this research also contributes to the growing literature on

limited pharmacy accessibility, or “pharmacy desert” in public health literature (Amstislavski

et al. 2012, Qato et al. 2014, Di Novi et al. 2020). I highlight three aspects. First, to the

health insurance in-network/out-of-cost, and qualities.
4Specifically, my correction terms includes conditional expectation of shifters xi, x−i and common con-

trols x0 to satisfy identification assumption in Tamer (2003) and Bajari et al. (2010b). In contrast, Nekipelov
et al. (2022)’ sketch uses only common controls x for both players.
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best of my knowledge, this paper is the first to study the pharmacy desert through the lens

of competition, by providing causal and structural estimates of the effect of chain pharmacy

entry on local market structure. Second, I focus on rural towns only. Due to the fewer

stores and smaller population in rural markets, these markets are most impacted by the

closure of independent stores, increasing trends in limited pharmacy accessibility. Finally,

I further document that towns with higher share of elderly population experienced rapid

growth in limited accessibility - which is concerning because the elderly population faces

higher transportation costs and limited mobility.

The rest of the paper is structured as follows: Section 2 provides a description of the

conventional econometric models use in static games with incomplete information. The

models are built upon the framework established in Bajari et al. (2010b) and Bajari et al.

(2013). Section 3 characterizes the definition of Neyman orthogonal moments and their

properties and also provides an asymptotic theory for proposed estimators. Section 3 also

presents simulations to evaluate the finite sample properties. Section 4 illustrates data and

background. Section 5 provides reduced form evidences and present the structural estimation

results. Section 6 presents the counterfactual analysis. Section 7 concludes the paper. The

appendix includes omitted proof in the main paper.

Notation. I use the symbol E to represent the expectation with respect to some proba-

bility measure that governs the law of the data and EP to denote the expectation under a

probability measure P .

2 MODEL FRAMEWORK

I focus on static games of incomplete information, closely following the framework presented

in Bajari et al. (2010b) and Bajari et al. (2013). This context involves a defined set of

players, represented as i ∈ {1, ..., N}. Each player has two distinct choices, which we denote

byJ = 2. 5

ai =

1 if Player i chooses to being active.

0 if Player i chooses being inactive.
(2.1)

Let A = {0, 1}N represent the Cartesian product of the choices made by all players in a

market. In this framework, the objective of each player is to maximize their utility. I use

a = (a1, . . . , an) as a generic representation of A. Adhering to traditional game-theoretic

5Without loss of generality, this framework can be extended to encompass multiple choices, represented
by |J| > 2, corresponding to a multinomial choice.
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conventions, −i denotes the rivals of player i, and a−i = (a1, . . . , ai−1, ai+1, . . . , aN) describes

the strategy choices of all players excluding player i.

For an active player i, the flow utility is contingent upon the state variables di ∈ Di. The

combined set of state variables for all players is represented by the vector d = (d1, . . . , dN) ∈
D. The Cartesian product of these state variables is denoted as D =

∏
i Di. Additionally, I

assume the state variable d is universally observed to both every player in the market and

to econometricians.

In addition to the state variables, I incorporate private information, ϵi(ai), drawn from a

distribution fi, which is specific to each player’s choices and directly influences their utilities.

The private information for each player i is represented as:

ϵi = (ϵi(1), ϵi(0)).

Here, ϵi(1) pertains to the situation where player i is active, while ϵi(0) corresponds to the

player being inactive.

I make the assumption that while each player cannot observe the stochastic private

information shock of their rivals, ϵ−i(a−i), they are aware of the distribution g−i. This type

of information structure is prevalent in discrete choice scenarios.

Assumption 2.1 (Information).

(a) Private information is independently and identically distributed across both choices and

players, drawn from a Type 1 Extreme Value Distribution, f .

(b) Each player privately observes their own ϵ which remains hidden from analysts.

(c) The state vector d is accessible to all players within the same market and is also dis-

cernible by analysts.

Assumption 2.1 (a) highlights the conditional independence assumption, which specifies

that ϵi is independent of ϵ−i given d. This paper narrows its focus on settings characterized

by incomplete information, as articulated in Assumption 2.1 (b). This suggests that the

realized utility functions are private information to the respective players.

Given the private information ϵ and the observable state variable d, the utility of player

i can be expressed in additively separable forms:

Assumption 2.2 (Additive Separability).

ui(a, d, ϵi; θ) = Πi(ai, a−i, d; θ) + ϵi(ai). (2.2)
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In the above equation, the payoff function Πi(ai, a−i, d; θ) is additively separable with

respect to private information. The payoff function depends on the agent’s discrete choice

ai, the choices of other agents a−i, and the state variable d. If no strategic interaction exists,

implying that the flow utility is independent of other players’ choices, the strategic model

simplifies to a binary logit model. In this single-agent model, utility is solely a function of

the individual’s choice, relevant state variables, and private information.

In alignment with the standard discrete choice model, I normalize the utility associated

with the outside option, which refers to the state of inactivity in the context of this game.

This normalization is crucial for identifying payoffs when a player decides to be active.

Formally, I assume the utility of the outside option to be zero.

Assumption 2.3 (Normalization of Outside Choice).

∀ a−i ∈ A−i, ∀ d, Πi(ai = 0, a−i, d) = 0. (2.3)

By setting the payoffs of inactivity to zero, I ensure that the payoff of being active is

inherently measured relative to the inactive choice. Put simply, the payoff function reflects

the differential between the utilities of being active and inactive. This assumption also

highlights that the payoff derived from inactivity remains unaffected by the decisions of

other players. Consequently, regardless of the actions taken by rival players a−i, the payoff

of the outside option remains at zero.

For a two-player game, I define the decision-choice rule as ai = δi(d, ϵi(ai)). Given that

neither econometricians nor rivals observe ϵi, the decision rule is characterized by choice

probabilities:

σi(ai = 1|d) =
∫

1{δi(d, ϵi(ai)) = ai}f(ϵi)dϵi,

where 1{δ(d, ϵi(ai)) = ai} stands as the indicator function that takes the value of 1 if player

i chooses action 1, and 0 otherwise. It is pivotal to note that due to the private nature of

information, the decision rules, specifically δi(d, ϵi(ai)), remain independent of the private

information of her rivals, ϵ−i.

I also assume a simultaneous game setup wherein players make decisions simultaneously

without observing the choices of their counterparts. In line with the discrete game litera-

ture, I incorporate the notion of belief information, ensuring that players hold correct beliefs

about their rivals’ choice probabilities. This view aligns with the Bayesian Nash equilib-

rium, where agents’ beliefs about their rivals correspond with the actual conditional choice

probabilities. However, this assumption might be strong in real-world scenarios. Xie (2022)
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proposed a more flexible approach by including unrestricted unknown functions in their

model, suggesting an avenue for future research.

Assumption 2.4 (Correct Beliefs).

In conjunction with the incomplete information structure, players form accurate beliefs

about their rivals’ choices.

Given private information assumptions 2.1 and the correct beliefs as per assumption 2.4,

the choice-specific value function can be articulated in terms of the expected payoffs linked

to rivals’ choice probabilities, denoted as σ−i.

Πi(ai = 1, d; θ) =
∑

a−i∈A−i

σ−i(a−i|d)πi(ai = 1, a−i, d; θ) for all i = 1, ...n. (2.4)

where σ−i(a−i|d) =
∏
s ̸=i

σs(as|d)

The given expression delineates the deterministic components of the expected payoff for

player i, contingent on their chosen action ai and the distribution of choice probabilities

of their rivals, denoted by σ−i. The extent of interaction stemming from rivals becomes

particularly pronounced here: the utility that player i derives from opting to be active is

intrinsically tied to the choices of her adversaries, a−i.

Building on this, the optimal decisions of player i are encapsulated by the following:

σ∗
i (ai = 1|d) = Pr

 Πi(ai = 1, d)︸ ︷︷ ︸
=
∑

a−i∈A−i
σ−i(a−i|d)πi(ai=1,a−i,d)

+ϵi(1) ≥ Πi(ai = 0, d)︸ ︷︷ ︸
=0

+ϵi(0)



σ∗
−i(a−i = 1|d) = Pr

 Π−i(a−i = 1, d)︸ ︷︷ ︸
=
∑

a−i′ ̸=−i∈A−i′
σ−i′ (a−i′ |d)π−i(a−i=1,ai,d)

+ϵ−i(1) ≥ Π−i(a−i = 0, d)︸ ︷︷ ︸
=0

+ϵ−i(0)

 .
Agents choose to be active if and only if the sum of deterministic expected payoff and

stochastic error components associated with being active is greater than the outside option

and associated private information.

To provide a comprehensive overview, I’ve mapped out the sequence of events in the

game, which is illustrated in Figure 2.1. At each time point t, in every market, players

initially receive their private insights, symbolized by ϵi(ai). Subsequently, all participants

become aware of the relevant state vectors, d. Based on knowledge about their rivals’ private

choices, represented by f−i(a−i), each player i anticipates how their competitors might act, as
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signified by the choice probability σ−i(a−i|d). Having gathered all this information, players

then finalize their decisions, denoted ai, and the game progresses to the succeeding period,

t+ 1.

Figure 2.1: Timing of the Game

t

Relevant state
vectors d is realized

and observed
by every player.

Conditional on
f−i(ϵ−i(a−i)), player i
forms a belief about
rival’s choice prob-
abilities σ−i(a−i|d)

With state vectors
d and σ−i(a−i|d),

players make optimal
decisions a−i.

For each market,
players i observe
her private in-
formation ϵi(a)

t+1

I now describe the mapping from choice-specific value functions to equilibrium choice

probabilities. Under assumptions about correct belief, Type 1 Extreme Value distributions

over private information, and normalized outside payoff, I can express equilibrium choice

probabilities of choosing to be active as a system of equations. Taking a two-player game

as an example, the choice probabilities, from both the econometrician’s and the rival’s per-

spectives, are articulated as:

σi(ai = 1|d) = Ψi(Πi(ai, d)) :=
exp(πi(ai = 1, d))

1 + exp(πi(ai = 1, d))

σ−i(a−i = 1|d) = Ψ−i(Π−i(a−i, d)) :=
exp(π−i(a−i = 1, d))

1 + exp(πi(a−i = 1, d))
(2.5)

where equilibrium functions Ψ map the choice-specific value function into choice probabili-

ties. By the correct belief assumption 2.4, the probability of being active is the equilibrium

probability in that she makes her best responses after observing the state variable, which is

consistent with Bayesian Nash equilibrium (BNE).

Building upon this foundation, I expand the scope to encompass games with n players.

In this context, after fixing state variable d, σi(ai|d) will be the solution to the system of n

equations:

σ1(a1 = 1|d) =
exp
(∑

a−1∈A−1
σ−1(a−1|d)πi(a1 = 1, a−1, d)

)
1 + exp

(∑
a−1∈A−1

σ−1(a−1|d)πi(a1 = 1, a−1, d)
) (2.6)

σ2(a2 = 1|d) =
exp
(∑

a−2∈A−2
σ−2(a−2|d)πi(a2 = 1, a−2, d)

)
1 + exp

(∑
a−2∈A−2

σ−2(a−2|d)πi(a2 = 1, a−2, d)
)
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...

σN(aN = 1|d) =
exp
(∑

a−N∈A−N
σ−N(a−N |d)πi(aN = 1, a−N , d)

)
1 + exp

(∑
a−N∈A−N

σ−N(a−N |d)πi(aN = 1, a−N , d)
)

I highlight the system of equations in 2.6 several issues. First, I presume the existence

of a solution to equation (2.6), following McKelvey and Palfrey (1995)’s standard Brouwer’s

fixed-point argument. Secondly, the estimation of the equilibrium choice probabilities σi is

complicated by the dependence of the rivals’ choice probabilities σ−i on the player i’s choice

probabilities.

There are primarily two approaches to address the aforementioned challenge. Building

upon the nested fixed point (NXFP) method introduced by Rust (1987), Aguirregabiria

and Mira (2002) devised an iterative algorithm tailored for dynamic games, which can be

seamlessly adapted for static games. Specifically, within the inner loop, the algorithm iter-

ates to the fixed point in 2.6, delineating the relationship between equilibrium choices, σi,

and equilibrium beliefs for each player i = 1, . . . , N . Subsequently, the outer loop employs

each candidate parameter vector to compute a pseudo-likelihood, echoing the conventional

maximum likelihood approach inherent to logistic regression. This iterative mechanism per-

sists until convergence is attained. The NXFP method, sometimes referred to as the nested

pseudo-likelihood approach, includes two primary limitations: the computational intensity

arising from the dual-layered iteration and the assumption of a unique equilibrium in the

model, which precludes the possibility of multiple equilibria6.

The second approach, pioneered by Hotz and Miller (1993) and Bajari et al. (2010b)

employs a two-step method. This method is computationally light and uses weaker assump-

tions about multiple equilibria compared to the NXFP algorithm. 7 In the first stage,

I non-parametrically estimate conditional expectation σ−i = E[a−i = 1|d] from observed

choices and market characteristics d.8 In the second stage, the econometrician estimates a

single-agent random utility model. This model incorporates both market characteristics, d,

6For every prospective parameter vector, the algorithm necessitates the determination of a fixed point
for equilibrium choices.

7For an in-depth discussion and comparison of these methodologies, I direct readers to Ellickson and
Misra (2011). It’s essential to note that I am not advocating for the superiority of the two-step methods over
NXFP. My perspective stems from the ease with which one can integrate the findings of Newey (1994) and
Chernozhukov et al. (2022). Given that the two-step approaches align with the classical semi-parametric
estimation framework, it’s feasible to apply the properties detailed in Chernozhukov et al. (2022). The
incorporation of high-dimensional covariates based on NXFP methods is outside of the scope of this paper.
For a relevant perspective, consider Dearing and Blevins (2019) and their exposition on zero Jacobian
properties within the context of Efficient Pseudo-Likelihood.

8A formal introduction to the econometric principles underpinning the two-step methods will be presented
in the subsequent section.
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and the equilibrium beliefs, σ−i, obtained from the first stage.

Given that multiple equilibria are prevalent in models with discrete games in the liter-

ature, I introduce an assumption regarding the selection of an equilibrium from the set of

potential equilibria.

Assumption 2.5 (Equilibrium Selection).

The data are generated by a single equilibrium from the set of possible multiple equilibria

and observed equilibrium does not switch over different markets.

This assumption is relatively weaker compared to the uniqueness assumption, as it per-

mits the existence of multiple equilibria in the model. As long as the equilibrium played

in the data remains consistent across different markets or time periods, the initial stage of

estimation accurately retrieves the choice probabilities of the underlying choice-specific value

functions. Consequently, even if the obtained parameters might suggest other equilibria not

played in the data, the estimates in the second stage remain consistent. Notably, this as-

sumption is widely employed in two-stage estimation approaches, encompassing both static

games (Bajari et al. 2010b, Ellickson and Misra 2011), and dynamic games (Aguirregabiria

and Mira 2007, Bajari et al. 2007, Pesendorfer and Schmidt-Dengler 2008).

When coupled with the equilibrium selection assumption, the two-stage methods obviate

the need for iterative model solving, effectively addressing the challenge posed by multiple

equilibria in the estimation process. Additionally, researchers can derive a set of structural

parameters without the need for repeated model solving, leading to a substantial reduction

in computation time.

2.1 Identification

This section focuses on reviewing the identification results established in the literature, specif-

ically in the works of Bajari et al. (2010b) and Bajari et al. (2010a). The purpose of revisiting

Bajari et al. (2010b) is to highlight that the incorporation of high-dimensional state variables

denoted as d does not alter the identification outcomes. Thus, the arguments developed in

Bajari et al. (2010b) remain applicable even when dealing with high-dimensional covariates.

To enhance readability and comprehension of the recovery process for underlying structural

parameters θ, I present a restatement of the identification problems.

Definition 1 (Identification). Deterministic payoff components π(ai, a−i, d) are identified

if different deterministic payoff components σi(ai = 1|d) ̸= σ̃i(ai = 1|d) yield alternative

equilibrium probabilities π(ai, a−i, s) ̸= π̃(ai, a−i, d).
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The identification condition requires that different payoffs should generate different equi-

librium choice probabilities. A necessary condition implies that without further assumptions

about exclusion restrictions, the identification of the underlying model cannot be achieved.

Manski (1993) called this issue a reflection problem associated with social interaction. To

further illustrate this issue, consider the following illustrative examples featuring two play-

ers, denoted as (i = 1, 2), engaging in binary choices. Their respective choice-specific value

functions can be expressed as:

Π1(a1 = 1|d)︸ ︷︷ ︸
unknown

= σ2(a2 = 1|d) π1(a1 = 1, a2 = 1|d)︸ ︷︷ ︸
unknown

+(1− σ2(a2 = 1|d))π1(a1 = 1, a2 = 0|d)︸ ︷︷ ︸
unknown

Π1(a1 = 0|d)︸ ︷︷ ︸
known

= 0

Π2(a2 = 1|d)︸ ︷︷ ︸
unknown

= σ1(a1 = 1|d) π2(a1 = 1, a2 = 1|d)︸ ︷︷ ︸
unknown

+(1− σ1(a1 = 1|d))π1(a1 = 0, a2 = 1|d)︸ ︷︷ ︸
unknown

Π2(a2 = 0|d)︸ ︷︷ ︸
known

= 0

(2.7)

After fixing d, the left-hand side of equation (2.7) comprises two unknown components:

the deterministic utilities Π1(a1 = 1, d) and Π2(a2 = 1, d). In accordance with the assumption

2.3, the expected payoff of remaining inactive, Π1(a1 = 0, d) and Π2(a2 = 0, d), is known

to the econometrician, which normalized to zero. Conversely, on the right-hand side of

the equation, there exist four unknowns: π1(a1 = 1, a2 = 1, d), π1(a1 = 1, a2 = 0, d),

π2(a1 = 1, a2 = 1, d), and π2(a1 = 0, a2 = 1, d). This results in an under-identified scenario.9

The utilization of exclusion restrictions is a common strategy for disentangling the system

of equations in (2.7) to satisfy identification condition.10 The exclusion restriction requires

that the relevant state variable d can be split into two components: one that is universal

across all players within the same market, referred to as dx, and player-specific shocks denoted

as di for each player i = 1, ..., n. Notably, player-specific shocks do not directly impact the

payoffs of player −i, but they do influence the rival’s payoffs indirectly through their effects

on the rival’s endogenous choices.

Assumption 2.6 (Exclusion Restriction ).

πi(ai, a−i, d) = π(ai, a−i, dx, di).

9The recovery of choice probabilities σi relies on first-stage reduced form choice probabilities.
10For more comprehensive discussions, see Bajari et al. (2010b), Bajari et al. (2010b).
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Given the imposition of exclusion restrictions, let d = (dx, d1, d2), where dx represents

common state variables for players 1 and 2 in the same markets, d1 is player 1’s specific

state variable, and d2 is player 2’s specific state variable. When dx is held constant, it can

be omitted for simpler notation. For the exposition, I further assume that each shifter takes

binary values: ‘H’ denotes High, and ‘L’ denotes Low. To streamline the discussion, let

Πi(ai = 1|d1 = H, d2 = H) := Πi(ai = 1|H,H) and σi(ai = 1, a−i = 1|d1 = H, d2 = H) :=

σi(ai = 1, a−i = 1|H,H) for brevity.

Π1(a1 = 1|H,H) = σ2(a2 = 1|H,H) π1(a1 = 1, a2 = 1|d1 = H, d2 = H)︸ ︷︷ ︸
=π1(a1=1,a2=1|d1=H)

+ (1− σ2(a2 = 1|H,H)) π1(a1 = 1, a2 = 0|d1 = H, d2 = H)︸ ︷︷ ︸
=π1(a1=1,a2=0|d1=H)

Π1(a1 = 1|H,L) = σ2(a2 = 1|H,L)π1(a1 = 1, a2 = 1|H,L)︸ ︷︷ ︸
=π1(a1=1,a2=1|d1=H)

+ (1− σ2(a2 = 1|H,L))π1(a1 = 1, a2 = 0|H,L)︸ ︷︷ ︸
=π1(a1=1,a2=0|d1=1)

Π1(a1 = 1|L,H) = σ2(a2 = 1|L,H) π1(a1 = 1, a2 = 1|L,H)︸ ︷︷ ︸
=π1(a1=1,a2=1|d1=L)

+ (1− σ2(a2 = 1|L,H))π1(a1 = 1, a2 = 0|L,H)︸ ︷︷ ︸
=π1(a1=1,a2=0|d1=L)

Π1(a1 = 1|L,L) = σ2(a2 = 1|L,L)π1(a1 = 1, a2 = 1|L,L)

+ (1− σ2(a2 = 1|L,L)) π1(a1 = 1, a2 = 0|L,L)︸ ︷︷ ︸
=π1(a1=1,a2=0|d1=L)

(2.8)

The exclusion restriction implies that π1(a1 = 1, a2 = 1|d1 = H, d2 = H) = π1(a1 = 1, a2 =

1|d1 = H, d2 = L), which leads to the following equation:

Π1(a1 = 1|H,H) = σ2(a2 = 1|H,H)π1(a1 = 1, a2 = 1|d1 = H)

+ (1− σ2(a2 = 1|H,H))π1(a1 = 1, a2 = 0|d1 = H)

Π1(a1 = 1|H,L) = σ2(a2 = 1|H,L)π1(a1 = 1, a2 = 1|d1 = H)

+ (1− σ2(a2 = 1|H,L))π1(a1 = 1, a2 = 0|d1 = H)

Π1(a1 = 1|L,H) = σ2(a2 = 1|L,H)π1(a1 = 1, a2 = 1|d1 = L)

+ (1− σ2(a2 = 1|H,L))π1(a1 = 1, a2 = 0|d1 = L)

Π1(a1 = 1|L,L) = σ2(a2 = 1|L,L)π1(a1 = 1, a2 = 1|d1 = L)

+ (1− σ2(a2 = 1|L,L))π1(a1 = 1, a2 = 0|d1 = L) (2.9)
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The left-hand side of the system of equations in 2.9 involves dim(d1)×dim(d2) = 2×2 = 4

unknowns. In contrast, the right-hand side of the equation encompasses four unknowns

(π1(a1 = 1, a2 = 1|d1 = H), π1(a1 = 1, a2 = 0|d1 = H), π1(a1 = 1, a2 = 1|d1 = L), π1(a1 =

1, a2 = 0|d1 = L)). This implies that the equation 2.9 is identified. A similar argument can

be applied to demonstrate the identification of payoffs for player 2 based on equation 2.10.

Π2(a1 = 1|H,H) = σ1(a1 = 1|H,H)π2(a1 = 1, a2 = 1|d2 = H)

+ (1− σ1(a1 = 1|H,H))π2(a1 = 1, a2 = 0|d2 = H)

Π2(a1 = 1|H,L) = σ1(a1 = 1|H,L)π2(a1 = 1, a2 = 1|d2 = H)

+ (1− σ1(a1 = 1|H,L))π2(a1 = 1, a2 = 0|d2 = H)

Π2(a1 = 1|L,H) = σ1(a1 = 1|L,H)π2(a1 = 1, a2 = 1|d2 = L)

+ (1− σ1(a1 = 1|H,L))π2(a1 = 1, a2 = 0|d2 = L)

Π2(a1 = 1|L,L) = σ1(a1 = 1|L,L)π2(a1 = 1, a2 = 1|d2 = L)

+ (1− σ1(a2 = 1|L,L))π2(a1 = 1, a2 = 0|d2 = L) (2.10)

More generally, the choice-specific value functions as expressed in equation (2.4) could

lead to the following expression:

Πi(ai = 1, d)︸ ︷︷ ︸
unknown

=
∑

a−i∈A−i

σ−i(a−i|d)︸ ︷︷ ︸
known

πi(ai = 1, a−i, d)︸ ︷︷ ︸
unknown

for all i = 1, ..., N. (2.11)

This equation implies that, once dx is fixed, the left-hand side of the equations contains N

unknowns (Π1, ..,ΠN), whereas the right-hand side equations encompass N×2N−1 unknowns

(πi(ai = 1, a−i, d)).
11 Consequently, without the introduction of exclusion restrictions, the

system of equations in (2.11) cannot be identified. Next, armed with the assumption of

exclusion restrictions as given in Assumption 2.6, I can reformulate the choice-specific value

function as follows:

Πi(ai = 1, di, d−i)︸ ︷︷ ︸
unknown

=
∑

a−i∈A−i

σ−i(a−i|di, d−i)︸ ︷︷ ︸
known

πi(ai = 1, a−i, di)︸ ︷︷ ︸
unknown

for all i = 1, ..., N. (2.12)

Evidently, the number of unknowns (free parameters) on the left-hand side has reduced

from πi(ai = 1, a−i|di, d−i) to πi(ai = 1, a−i, di). This induces more variations on the right-

hand side than the number of unknowns on the left-hand side flow utilities Πi(ai = 1, di, d−i),

11The challenge posed by the curse of dimensions is evident, as players are required to formulate beliefs
about all possible choices for their rivals.
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which is the over-identified case.12 It follows the necessary condition that the supports of

beliefs σ−i(a−i = 1|di, d−i) need to be sufficiently rich with 2N−1 points. It is evident that

the incorporation of high-dimensional common market characteristics dx does not impact the

identification conditions, as long as the rank conditions for d−i given di are satisfied. The

crucial determinants of identification are the number of players, choices, and variations d−i|di
involved in the system, rather than the dimensionality of the common market characteristics

dx.

Remark 1 (Identification).

1. Suppose that Assumption 2.3 and Assumption 2.6 are satisfied. As long as there are

2N−1 points in the support of conditional distribution d−i|di related to σ−i(a−i|di, d−i),

then the necessary condition holds.

2. Allowing high dimensional market characteristics dx does not change necessary condi-

tions for identification.

A common example of exclusion restrictions is player-specific productivity shocks (Er-

icson and Pakes (1995)). Other instances encompass factors like the distance of a store

to its distribution center, as explored in studies such as (Holmes, 2011) and (Jia, 2008).

The underlying concept behind imposing exclusion restrictions is as follows: by imposing a

restriction on the distance to the distribution center, the distance between player −i and
the distribution center of player −i, denoted as d−i, will directly impact player −i’s entry

probability. Conversely, player i’s entry probability is indirectly influenced by d−i through

the choices made by the rival. The variation in the distance between player −i and the

distribution center of player −i provides more equations in comparison to the number of

unknowns on the left-hand side of the equation (2.12).

2.2 Two Step Estimation

The two-step method described here is an approach widely used for estimating structural

parameters in static games with discrete choices. This method involves two key steps: in the

first step, nuisance parameters like the choice probabilities of rivals are estimated through

techniques like non-parametric methods, machine learning methods, or simple conditional

logit models under parametric assumptions. In the second step, the estimated nuisance

parameters are leveraged to formulate a method of moment conditions, upon which the

Generalized Method of Moments (GMM) is employed to estimate the parameters of interest.

12In practice, testing for over-identification can be performed as suggested in Bajari et al. (2013).
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The benefit of this approach lies in its flexibility and computational efficiency, facilitating the

incorporation of high-dimensional market characteristics and the utilization of contemporary

machine-learning techniques.

I additionally assume the linearity of flow payoffs, another common assumption in the

empirical literature. The advantage of this assumption lies in the property that the choice-

specific value function Πi(ai = 1, dx, di, d−i; θ) will have a linear dependence on the expected

payoffs. For instance, this takes the functional form:

Πi(ai = 1, dx, di, d−i; θ) =
∑

a−i∈A−i

σ−i(a−i|dx, di, d−i)θγ + diβd + d′xβx (2.13)

Here, θγ represents the interaction effects from rivals, βd shows the effect of player-specific

productivity shock for player i, and βx encompasses the effect of common market character-

istics. I denote β = (βd, βx).

Step 1: Estimation of nuisance parameters

An analyst observes data on choices A = {0, 1}N for all N players and relevant state variables

d. In the first stage, one can construct and estimate the conditional choice probability of

being active for each player −i. Formally, the first stage reduced form choice probability can

be expressed as:

γ−i = E[a−i|d−i, di, dx] for all − i = 1, ..., N.

Non-parametric methods such as kernel or series estimation, or conditional logit can be

employed to estimate the nuisance parameters in the first stage. It is important to note that

this requires a unique equilibrium in the data so that the first stage estimates γ̂−i can be

consistent estimates of σ−i.

Step 2: Recovering the Structural Parameters

Given the correctly specified first stage γ̂−i, the next step is to recover the underlying struc-

tural parameters of interest θ and β from equation 2.13. To accomplish this, I follow Bajari

et al. (2010b)’s semi-parametric models. Coupled with the Type 1 Extreme Value Distri-

bution, an econometrician can construct moment condition using a properly specified set of

variables zi:

argmin
θ,β

m(wi; θ, β) = zi(ai − Λ(di, dx, γ̂−i; θ, β))). (2.14)
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where w denotes the data wi = (ai, di, dx) and Λ denotes the logit-link function.

With low-dimensional vector dx, all the parameters in the model, the interaction effect

θγ and covariate effects β, can be recovered with
√
N -consistency and asymptotic normality

as established in Bajari et al. (2010b) and Newey and McFadden (1994). Now I consider

the setting where common market characteristics dx encompass high-dimensional covariates,

that is, the dimension of dx being comparable to or potentially larger than the sample size

n. The goal is to develop an inference for the parameter of interest θ in the presence of high-

dimensional nuisance parameters η. For illustration purposes, I set the interaction effect θγ

as the main parameter of interest and set parameters (γ−i, β), as nuisance parameters. 13

In this high-dimensional setting, the conventional GMM method becomes infeasible. To

avoid this bottleneck, I try to implement machine learning methods with regularization to

enable estimation. For example, I could employ a Logistic Lasso estimator to estimate first-

stage choice probability γ̂−i as well as covariates effects β in the second stage. This imposes

the regularization in that it requires the sparsity assumption such as

s2log2(dim(dx) ∨N)

N
→ 0

to enable estimation with high-dimensional covariates, where dim(dx) refers to the dimension

of dx.

However, when machine learning estimates are used to estimate nuisance parameter

η = (γ−i, β), the parameters of interest θ do not necessarily achieve
√
N -consistency, as

documented in Chernozhukov et al. (2022). This is because using the estimator η̂ to esti-

mate θ̂ incurs the first-order bias, but machine learning estimators usually exhibit a slower

convergence rate than
√
N . Formally, this can be examined by looking at the directional

(Gateaux) derivative with respect to the nuisance parameters η being non-zero:

∂γ−i
E[m(wi; θ, η)][γ−i − γ−i0] = E

zi · Λ′ ·

−θγ
∑
a−i

∏
s ̸=i,i

(1− γs)

 · (γ−i − γ−i0)

 ̸= 0

for − i = 1, . . . , i− 1, i+ 1, . . . , n.

∂βE[m(wi; θ, η)][β − β0] = E [(ziΛ
′ · β) · (β − β0)] ̸= 0

where the directional derivative is defined in Section 3. This implies that the moment

condition in (2.14) is not robust to the local misspecification of the first-stage nuisance

13I incorporate a subset of β as the parameter of interest instead of the nuisance parameters, in the
empirical application in Section 5. The developed methodology in Section 3 can be trivially extended to this
case.
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parameters. Therefore, the first-order biases of the nuisance parameter would affect the√
N -consistency in the target parameter.

To overcome these limitations, in the next section, I introduce so-called Neyman orthogo-

nal moments that are insensitive to local misspecification from first-stage nuisance estimators

η, based on the original moment in equation (2.14). These methods can provide robust and

efficient estimations of parameters of interest in the presence of high-dimensional nuisance

parameters. Structural parameters of interest based on the developed method also achieve√
N -consistency and asymptotic normality.

3 The DML-STATIC GAME ESTIMATOR

This section presents the DML-static game estimator, which is based on the works of Bajari

et al. (2010b), Belloni et al. (2016), and Chernozhukov et al. (2022). Section 3.1 formally

introduces the definition of Neyman orthogonal moment condition, while Section 3.2 pro-

vides new moment conditions derived from the GMM equation (2.14). In Section 3.3, the

estimation procedure combined with the cross-fitting algorithm is outlined. The asymptotic

properties of the proposed estimator are analyzed in Section 3.4, and the estimator is ex-

tended to cover games with multiple players in Section 3.5. Finally, Section 3.6 evaluates the

finite sample properties of developed estimators through a series of Monte Carlo simulations.

3.1 The Definition of Neyman Orthogonal Moment Condition

This section presents the concept of Neyman orthogonal moment condition following the

framework in Chernozhukov et al. (2018a). I introduce the definition in my context for

clarity. Let θ ⊂ Rdim(θ) be the structural parameters of interest and η ∈ T be the infinite-

dimensional nuisance parameter where T is a convex subset of some normed vector space

with norm denoted by || · ||T . Under true values θ0 and η0, the following moment function is

assumed to satisfy:

E[ψ(W ; θ0, η0)] = 0. (3.1)

Following Chernozhukov et al. (2018a) and Van der Vaart (2000) section 20.2, I define the

directional (Gateaux) derivative map Dτ : T̃ → Rdimθ as

Dτ [η − η0] := ∂τ{EP [ψ(W, θ0, η0 + τ(η − η0)]|}, η ∈ T
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for all τ ∈ [0, 1) and I assume its existence. The derivative at τ = 0 is denoted as

∂ηEP [ψ(W ; θ0, η0)][η − η0] := D0[η − η0], η ∈ T (3.2)

for convenience.

Definition 2. The moment function ψ(W, θ, η) obeys Neyman orthogonality condition at

(θ0, η0) with respective to the nuisance parameter realization set TN ⊂ T if equation (3.1)

holds and the Gateaux derivative Dτ [η − η0] exists for all τ ∈ [0, 1) and η ∈ T, and the

orthogonality condition holds, that is

∂ηEP [ψ(W, θ0, η0)][η − η0] = 0 for all η ∈ TN . (3.3)

For the rest of the paper, I will refer to the moment function that satisfies the Neyman

orthogonality condition as the orthogonal moment function.

3.2 Orthogonal Moment Condition for Static Game: Two Players

Example

For illustrative purposes, the exposition initially focuses on two-player games, adhering to

the assumptions (2.1) -(2.6). I construct the moment function that satisfies the orthogonality

condition defined in Section 3.1 by adding the “bias correction terms” to the original moment

function (2.14). This makes the new moment function insensitive to the first-stage bias from

the nuisance parameter estimate γ̂. Specifically, the bias correction term with respect to

nuisance parameter β follows the optimal instrument approach in Belloni et al. (2016), and

the bias correction term with respect to γ−i follows the approach in Chernozhukov et al.

(2022). Additionally, there is a new nuisance parameter µz generated in the process of

constructing the orthogonal moment function.

Let fi ≡
√
Λ(·)(1− Λ(·)) where Λ denotes the choice probabilities from original moment

function. The construction of the Neyman orthogonal moment function is based on the

linear projection of zi on xi = (di, dx) with weighting fi, similar to Belloni et al. (2016).

fizi = fix
′
iµ+ ui, E[fixiui] = 0 (3.4)

Then, the orthogonal moment function is

ψ(wi; θ, η) = m(wi; θ0, η0) + ϕ(wi; θ0, α0, η0) (3.5)

m(wi; θ0, η0) = (zi − x′iµ) [ai − Λ(γ−i, θγ, β)] = µz [ai − Λ(γ−i, θγ, β)]
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ϕ(wi; θ0, α0, η0) = −E[µzΛ(·)(1− Λ(·))θγ|di, d−i, dx](a−i − γ−i) = α0(a−i − γ−i)

where µz = (fizi − fix
′
iµ)/fi = zi − x′iµ and α = E[µzΛ(·)(1 − Λ(·))θγ|di, d−i, dx]. This

moment function satisfies the orthogonality condition defined above.

Theorem 3.1. The moment function (3.5) obeys the Neyman orthogonality condition.

Theorem 3.1 states that the moment condition EP [ψ(wi; θ, η)] = 0 identifies the true

parameter and is insensitive to misspecification of η in the neighborhood of η0. The proof of

Theorem 3.1 can be found in the Appendix.

3.3 Estimation Procedure

I present the estimation procedure utilizing the cross-fitting algorithm proposed by Cher-

nozhukov et al. (2018a) combined with the two-step estimation method in Bajari et al.

(2010b).

Let K denote a positive integer and take a K-fold random partition I1, ..., IK of obser-

vation indices {1, . . . , N}. For simplicity, let each fold Ik have an equal size with n = N/K.

Define the auxiliary sample Ick = {1, ..., N}/Ik for each k ∈ {1, . . . , K}.

Step 1. Estimation of nuisance parameters using ML

For each k ∈ {1, . . . , K}, estimate the set of nuisance parameters η̂ = (γ̂−i, β̂, µ̂z) only using

observations not in the group k as

η̂k = η̂
(
(Wi)i∈Ick

)
.

For choice probabilities γ−i, econometricians can use modern machine learners such as Logit

Lasso, Random Forests Classifiers, or Neural Network Classifiers. For β, I use Logistic Lasso

following Belloni et al. (2016). To learn µ, I use Lasso based on the equations 3.4. Note that

the estimators of nuisance parameters are required to have convergence rates that are faster

than N−1/4.

Step 2. Recovering structural parameters θ

Using the estimated nuisance parameter estimates η̂k, I evaluate the moment condition in

equation 3.5 on the sample Ik. I obtain the final estimator θ̂ by aggregating the objective

functions for each k ∈ {1, . . . , K}. The formal estimation algorithm is summarized below.

Algorithm
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1. Take a K-fold random partition (Ik)
K
k=1 with same size n = N/K. For each k ∈

{1, . . . , K}, define Ick as the complement of Ik.

2. For each k ∈ {1, . . . , K}, construct an ML estimator η̂k = η̂((Wi)i∈Ick).

(a) Obtain γ̂−ik using ML Classifier of a−i on d−i, di and dx.

(b) Obtain β̂k using Logit Lasso estimator of ai on γ̂−i, di and dx.

(c) Compute θ̂γk from original moment function 2.14.

(d) Compute the conditional densities f̂k.

(e) Estimate µ̂zk from the Lasso estimator of f̂kzi on f̂kdx.

(f) Collect η̂k = (γ̂−ik, β̂k, µ̂zk).

3. Construct the estimator θ̂γ as

θ̂γ ∈ argmin
θ

1

K

K∑
k=1

Ln,k(θγ)

where Ln,k(θγ) =
{En,k [ψ(θγ, η̂k)]}2

En,k [ψ(θγ, η̂k)2]
and En,k is the empirical expectation over Ik,

that is, En,k[ψ(w)] = n−1
∑

i∈Ik ψ(wi). The moment function used in the objective

function is ψ(wi; θ, η) = µz [ai − Λ(θγ, βd, βx)] − α[a−i − γ−i] where α = E[µzΛ(·)(1 −
Λ(·))θγ|di, d−i, dx].

3.4 Asymptotic Analysis

In this section, I provide an asymptotic theory for DML static games with two players. The

analysis for multiple players can be provided by using the same arguments. I closely follow

the assumptions and proofs in Chernozhukov et al. (2022).

Assumption 3.1 (Convergence Rates).

For each ℓ = 1, ..., L,

i) ||γ̂−ihℓ − γ−ih0|| = Op(n
−1/4)

ii) ||β̂ℓ − β0|| = Op(n
−1/4)

iii) ||µ̂ℓ − µ0|| = Op(n
−1/4)
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Assumption 3.2 (Regularity Condition).

i) Wi = (Ai, D−i, Di, Dxi) are bounded.

ii) M is twice differentiable with uniformly bounded derivatives bounded from zero.

where M ≡ ∂m(w, γ, β; θ)

∂θ

iii) E[{Y−i − γ̂(D−i, Di, Dx)}2|D−i, Di, Dx] and α̂ are bounded.

iv) E[m(W, γ0, θ0)
2] <∞ and

∫
||m(w, γ̂ℓ, θ0)−m(w, γ0, θ0)||2F0(dw)

p−−→ 0

Theorem 3.2. Suppose that assumption 2.1-2.6, and assumption 3.2 holds. For V =

M−1E[ψ0(W )ψ0(W )′]M−1, the DML static game estimators constructed in orthogonal mo-

ment conditions in 3.5 obeys

√
N(θ̂ − θ0) → N(0, V ).

Also, the variance estimator V̂ is consistent where

V̂ =
( 1

K

K∑
k

E[M ]
)−1 1

K

K∑
k

E[ψ2(w, θ̂, η̂k)]
( 1

K

K∑
k

E[M ]
)−1

.

Theorem 3.2 establishes the asymptotic normality of the proposed DML estimator for

static games. The theorem shows that the proposed DML method is
√
N -consistent and

asymptotically normal. Additionally, even in the worst-case scenario, as long as the nuisance

parameters converge at a rate faster than N−1/4, many machine learning methods satisfy

the convergence rates of the nuisance parameters specified in Assumption 3.1. For instance,

conditions for Lasso/Logit Lasso are provided in Belloni et al. (2012), faster rates (shallow

trees) for Random Forest in Syrgkanis and Zampetakis (2020), and faster rates based on

critical radius in neural networks in Chernozhukov et al. (2021). The proof of Theorem 3.2

can be found in the Appendix.

3.5 Extension: Multiple Players

In this section, I extend the two-player game to a multiple-player game. Let S denote the

total number of players in the market. A significant difference is that now players form beliefs

about all the other players, resulting in a much larger number of possible combinations:

2N−1− 1. For clarity, I provide the original moment condition for multiple players, based on
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Bajari et al. (2010b):

m(wi; θ, η) = zi{ai − Λ(πi)} (3.6)

where πi = θγ
∑
a−i

S∏
s ̸=i

γs + βddi + βxdx.

As the number of choice probabilities to estimate in the first step increases, the number

of nuisance parameters increases as well. Therefore, I need to develop a moment function

that satisfies the orthogonality condition with respect to the new nuisance parameters γs.

The corresponding moment function is

ψ(wi; θ, η) = m(wi; θ0, η0) + ϕ(wi; θ0, α0, η0) (3.7)

m(wi; θ0, η0) = (zi − x′iµ) = µz [ai − Λ(γ−i, θγ, β)]

ϕ(wi, θ0, α0, η0) = −
∑
a−i

∏
s ̸=i,−i

α−i︸︷︷︸
=E[µzΛ(·)(1−Λ(·))(1−γs)θγ |di,d−i,dx]

[a−i − γ−i].

The new moment functions introduced in this paper differ from the influence functions

for discrete games proposed in the literature Bajari et al. (2010b) and Bajari et al. (2009).

In particular, the bias correction terms of the new moment functions incorporate the rival’s

choice probability, as opposed to the player’s own beliefs in the previous literature. This

distinction arises as the moment conditions include nuisance parameters over the rivals, not

the player’s own choices. With an increase in the number of players, the complexity of beliefs

over rivals also increases exponentially, leading to a corresponding exponential increase in the

correction terms. In the following, this paper formally derives the near orthogonal moments

for multiple players, building upon the results for two-player games in Theorem 3.1.

Theorem 3.3. The moment function (3.7) obeys the Neyman orthogonality condition.

The proof of Theorem 3.3 can be found in Appendix.

3.6 Monte Carlo Simulation

I conduct a series of Monte Carlo experiments to evaluate the finite sample properties of the

proposed method. I design the experiments to be analogous to the static entry/exit model

with incomplete information as in Bajari et al. (2010b). Then, I report the results to compare

the performance of the debiased estimator to the plug-in estimator in the high-dimensional

setting.
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The static entry/exit model and equilibrium

I simplify the model described in Section 2 into two players, normalizing the payoff to be

inactive to zero. The payoff of player i is a function of common market characteristics dx

for both players i and −i, rival’s choice probabilities σ−i, and a player-specific variable di,

expressed as follows:

πi(ai = 1|γ−i, di, dx; θγ, β) = σ−i(a−i = 1|di, d−i, dx)θγ + βddi + d′xβx.

Under Type 1 Extreme Value distribution assumptions, conditional choice probability can

be expressed in terms of relevant state variables and choice probabilities σ:

σi(ai = 1|σ−i, di, d−i, dx) =
exp (σ−i(a−i = 1|di, d−i, dx)θγ + βddi + d′xβx)

1 + exp (σ−i(a−i = 1|di, d−i, dx)θγ + β1di + d′xβx)

σ−i(a−i = 1|σi, di, d−i, dx) =
exp(σi(ai = 1|d−i, di, dx)θγ + βddi + d′xβx)

1 + exp(σi(ai = 1|d−i, di, dx)θγ + β1di + d′xβx)
.

(3.8)

Consistent with Bayesian Nash equilibrium, player i’s best response function σi depends on

her rival’s best response σ−i, and vice versa.

I can solve equation (3.8) via a fixed-point algorithm as it contains two unknowns and two

equations. The algorithm converges when the difference in the choice probabilities of being

active between the (k + 1)th and kth iterations is smaller than a predetermined tolerance

level ϵ for both i and −i. Throughout the convergence process, I did not encounter issues

related to multiple equilibria.

Data Generation

Using the best response function 3.8, I simulate market-firm level data for a decision-maker

who lives for ten periods and makes decisions on whether to be active or inactive in each

period. I set θγ = −1.5, βd = 2.14 For common market characteristics, I set d′0βx =

dx1βx1 + dx2βx2 where βx1 = 0.8 and βx2 = 1.4. To achieve varied finite samples, I simulate

datasets for a number of markets 50, 75, and 100 with two firms and allow ten periods of

time, resulting in 1,000, 1,500, and 2,000 total observations, respectively. I denote the total

observation size as N . I generate data from the model following these steps:

1. I independently draw common market characteristics for players in the same market

dx = (dx1, dx2) and player-specific shifter di, d−i from a uniform distribution with mean

14I follow the specifications of the parameter from Arcidiacono and Miller (2011)’s game with modifications
to avoid multiple equilibria.
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zero and variance one.15

2. I draw probabilities from a uniform distribution on [0, 1] and player i chooses to be

active (ai = 1) if the draw is less than or equal to the probability of being active,

σi(ai = 1|di, d−i, dx).

When implementing the Plug-in estimator and Orthogonal estimator, I additionally in-

clude many covariates dx0 with dim(dx0) = p = 500 in common market characteristics. dx0

is drawn from a standard normal distribution, then further normalized to mean zero and

variance one.

Estimation of the static entry/exit model

The first stage of estimation requires the estimation of nuisance parameters η̂ = (γ̂−i, β̂). In

the second stage, the structural parameter θγ is recovered. I compare the performance of

three different estimators: Oracle estimator, Plug-in estimator, and Orthogonal estimator.

Oracle estimator : Estimator of θ̂γ based on Bajari et al. (2010b) using only dx as common

market characteristic and shifter (di, d−i). This estimator assumes the knowledge of the true

identity of common market characteristics. I use a logit estimator for first-stage conditional

choice probabilities.

Plug-in estimator : Estimator of θ̂γ using (dx, dx0) as common market characteristic and

shifter (di, d−i) and imposing regularization to Bajari et al. (2010b). I estimate first-stage

conditional choice probabilities using the Logit Lasso estimator16 and obtain θ̂γ adopting

regularization to GMM estimation using 2.14.

Orthogonal estimator : Estimator of θ̂γ using (dx, dx0) as common market characteristic

and shifter (di, d−i) and using orthogonal moment condition. I estimate first-stage conditional

choice probabilities using the Logit Lasso estimator and use the orthogonal moment condition

in the second stage. I employ a cross-fitting algorithm with K = 5 as described in Section

3.3.

3.7 Simulation Results

Table 3.1 summarizes the Monte Carlo Simulation results. The histogram of the simulation

result with (N, p) = (2000, 500) is illustrated in Figure C.4. The true parameter value is

-1.5. These true parameters are partially from the literature Arcidiacono and Miller (2011)

15For this task, I draw 20 grid points from standard normal distributions using Python np.random.seed(0),
and scaled by mean 0 and variance 1.

16I use the penalty term recommended by Belloni et al. (2016), λ = c
√
nΦ−1(1 − γ/{2pn}) and hdm

package in R.

25



and I do not find multiple equilibria issues and corner solution problems. The mean bias,

percentage of bias relative to the true parameter value, 95% coverage probability, and RMSE

of three estimators are reported respectively in columns 2-5, 6-9, and 10-13.

When using the Oracle estimator, the estimates are well-centered around the true value

and show coverage probability close to 95%. This is as expected since the true model is

known to the econometrician. The results using the Oracle estimator provide a benchmark

when evaluating the performance of Plug-in and Orthogonal estimators.

When the Plug-in estimator is used, rival effects are severely biased upward due to

regularization bias in machine learning estimators. Column 7 reports the biases in percentage

terms and shows that the magnitude of biases is not negligible. Similarly, the coverage

probability reported in column 8 is far below the nominal level of 95%, indicating that the

Plug-in estimator has invalid inferential properties. The RMSE is also much larger compared

to the Oracle estimator.

When using the orthogonal estimator, the estimates are centered around the true values,

comparable to the result using the Oracle estimator and having a smaller bias compared to

the Plug-in estimator. The coverage probability and RMSE show better performance than

the Plug-in estimator but worse than the Oracle estimator.

Table 3.1: Simulation Results

Oracle estimator Plug-in estimator Orthogonal estimator

(N, p) Mean bias Bias(%) CP RMSE Mean bias Bias(%) CP RMSE Mean bias Bias(%) CP RMSE
(1000,500) -1.595 -6.323 0.960 0.522 -1.013 32.5 0.736 1.025 -1.529 -1.901 0.880 0.936

(0.410) (0.600) (0.615)
(1500,500) -1.562 -4.151 0.956 0.388 -0.913 39.143 0.668 0.872 -1.456 2.947 0.872 0.627

(0.329) (0.464) (0.472)
(2000,500) -1.545 -3.007 0.958 0.307 -0.905 -39.691 0.608 0.775 -1.477 1.526 0.858 0.566

(0.289) (0.402) (0.407)

Notes: Mean and Standard Deviation for 500 simulations. Column (1) represents the simulation scenario specifying the number
of observations (N) and the dimension of market characteristics (p). Columns (2)-(5) used the Oracle estimator and columns
(6)-(9) used the Plug-in estimator, and Columns (10)-(13) used developed Orthogonal estimator. For each estimator, the mean
bias, the percentage of bias, 95% coverage probability, and root mean square error (RMSE) are reported.

4 Data and Background

In this section, I provide the background of independent pharmacies, describe data sources,

illustrate limited pharmacy accessibility, and provide related descriptive statistics.
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4.1 Industry Background

Independent pharmacies have traditionally been characterized as independently owned-stores

or single-owner establishments. Independent pharmacies offer a wide range of services, func-

tioning as community hubs where individuals can get their prescriptions filled, seek advice

on minor ailments, and purchase over-the-counter medications and other everyday items.

However, the landscape began to shift in 1970 when chain pharmacies, mass-merchandised,

and supermarket-based pharmacies began to challenge the dominance of independent phar-

macies. Walgreens, founded in 1901 in Chicago; CVS Pharmacy, founded in 1963; and Rite

Aid, founded in 1962, all embarked on expansion sprees by opening new stores or acquiring

smaller chains. In the mass-merchandised pharmacy market, Walmart launched Walmart

Pharmacy in 1978 in Rogers, Arkansas, and has since grown to over 5,000 stores nationwide,

making it one of the largest pharmacy chains in the United States. Target opened its first

pharmacy in 1996, in Minneapolis, Minnesota, and has since expanded to over 1,600 stores

nationwide. In 2015, Target sold its pharmacy business to CVS Health, the second-largest

pharmacy chain in the United States. Due to their bulk purchasing power and significant

resources, chain, mass merchandise, and supermarket pharmacies often offer competitive

prices. They do this by leveraging economies of scale and substantial bargaining power

against health insurance companies. For example, Walmart offers a $4 generic prescription

program.

By 1999, the market share in prescription sales for chain pharmacies reached 40.3%.

Independent pharmacies trailed at 25.6%, with mass merchandisers at 10.1%, supermarket

pharmacies at 11.00%, and mail orders at 13.0% 17. Although the mail order market share

steadily rose by 15% in 2008, by 2018, their market share had reverted to 13.7%. I abstracted

away mail-order in the analysis because it takes a smaller portion of the market share.

In the 2000s, there was the continuing expansion of both merchandise-based pharmacies

(e.g., Walmart, Sam’s Club, Target) and supermarket-based pharmacies (Kroger, Publix),

particularly after 2005, which made less room for independent pharmacies. By 2019, there

were 22,773 chain pharmacies, 21,683 independent pharmacies, 8,427 supermarket-based

pharmacies, and 8,597 mass merchant-based pharmacies 18.

17Source: https://www.kff.org/wp-content/uploads/2000/06/3019-prescription-drug-trends-a-
chartbook.pdf

18Source: 2020 NATIONAL COMMUNITY PHARMACISTS ASSOCIATION DIGET
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4.2 Data

I combine data from multiple sources to construct the final dataset. In this dataset, geo-

graphic units, referred to as ”towns,” are defined as markets.19 Each entry contains details

about the pharmacy’s market entry/exit decisions and observable characteristics of both the

stores and the market.

My primary dataset is sourced from the Data Axle Historical Business Database, which

chronicles the operations of business establishments, including pharmacies, in the United

States from 1997 to 2021, updated annually. This dataset has been employed in recent

studies such as Dearing and Blevins (2019), Koh (2023), and Lepoev (2023). Since Data

Axle includes the addresses of each pharmacy store, I can assign these addresses to townships

using Python’s Geopandas. Furthermore, the panel data structure enables me to define entry

and exit every year.

Additionally, I obtain market-level data on demographic characteristics from the Census

and the American Community Survey (ACS) at the township (county subdivision) level. This

data offers rich market characteristics as well as consumer demographics. It allows me to

study how market characteristics and consumer demographics affect independent pharmacies’

decisions to enter or exit a market. I also obtain health-related characteristics from the

Current Population Studies (CPS) and ZIP Code Business Patterns dataset. Appendix D

provides more detailed information on data construction. Given that the nearest census data

is available starting from the year 2000, my analysis covers the period from 2000 to 2019.20.

Market Definition of Geographic Level

I define a geographic market based on townships (county subdivisions) that had pharmacies

at any point between 1997 and 2021. I chose the township as the geographic unit for the

following reasons:

1) As reflected in the survey results shown in Figures C.1 and C.2, consumers consider the

location of a pharmacy to be one of the most important factors. Consumers generally prefer

a pharmacy closer to their neighborhood, which aligns with the current market definition.21

2) My market definition follows earlier healthcare studies that used towns Schaumans

and Verboven (2008) and zip codes Lepoev (2023).22

19I explain the reasoning behind defining the geographic market at the town level in the subsequent
section.

20I have excluded data from early 2020 onwards from the analysis because of the onset of the pandemic,
as the market equilibrium might differ significantly from the pre-pandemic period.

21While my focus is granular township level, one might be concerned about the possibility that consumers
visit pharmacies while commuting to work. However, OFT (2003) reported that only 6% of patients visit
their pharmacy during their commute, further confirming the local nature of competitive interactions.

22Admittedly, there are other ways to define a market, such as pre-specified regions like census tracts or
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3) From an econometric analysis perspective, it is advantageous that the market-level

characteristics (e.g., population) from the Census, which I will describe in the next section,

align with the township-level geographic market. This means researchers can easily merge

township-level market characteristics into the township-level dataset.

4) Market definition of town level could be suitable as I provide reduced-form evidence in

section 5.2, which suggests that new entries of independent pharmacies outside of a township

have a minimal effect on pharmacies within that township. The widely used isolated market

assumption by Bresnahan and Reiss (1991) is likely valid in my settings.

Final Sample

Given the focus on rural areas, for a township to be included in the dataset as a rural

geographic market, it must: (i) ensure its geographic boundaries do not overlap with the

urbanized areas defined by the Census, as described in Appendix D.1, (ii) have a population

of more than 100 people, (iii) have had at least one pharmacy in operation between 1997 and

2001, (iv) not have had more than two independent pharmacies operating simultaneously

between 2000 and 201923, (v) not have had more than seven chain pharmacies within a

15-mile radius.

The first two criteria ensure that the sample is limited to rural areas. Restrictions (iii)

and (iv), which impose limits on the number of stores in a township, could potentially

introduce an endogenous sample selection issue. However, these restrictions are necessary to

maintain computational feasibility and to exclude townships that are close to urban clusters.

Additionally, I control for outliers in (v) as 95.3% of my final samples include at most seven

chain stores. This is because townships with more than seven chain pharmacies are likely to

be fundamentally different from typical rural townships.

4.3 Low Accessibility in Pharmacy

In this section, I document recent trends in towns with limited accessibility to pharmacy.

Here, consumers must travel several miles to obtain prescriptions. These areas are some-

times referred to as “limited access to pharmacy area” or “pharmacy deserts”. The term

”pharmacy desert” is inspired by the concept of a ”food desert”, an area where residents

struggle to find healthy foods due to a lack of nearby supermarkets or affordable food stores.

cluster analysis (k-means clustering) as used in Ellickson and Misra (2008). However, I chose the township
level because it is a pre-specified region that relatively follows the rectangular styles shown in the subsequent
figure 4.3.

23In the rural townships of my sample, 99.30% of samples have at most two pharmacies operating con-
currently.
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Similarly, a ”pharmacy desert” is an area without easy access to a pharmacy, making it

difficult for residents to obtain their medications.

I describe areas with “limited access to pharmacy” as those townships without any phar-

macies. This definition is based on the approach taken by Qato et al. (2014), who used

census tracts as a geographical reference, which are similar to townships. Elderly individuals

are especially vulnerable to these challenges due to mobility issues and high transportation

costs. As a result, my focus is on the Midwest rural areas, where the aging population is a

growing concern, as highlighted by (Mather et al., 2015).

Limited accessibility to pharmacy can lead to adverse health outcomes, such as increased

emergency department visits and hospitalizations.The consequences of patients not taking

their medications as prescribed, known as “non-adherence”, have been studied in Di Novi

et al. (2020). For a comprehensive discussion on the widespread issues of limited pharmacy

access and the resulting negative health impacts, see Di Novi et al. (2020). 24

Trends in Limited Accessibility in Pharmacy

Figure 4.1 illustrates the escalating trends in limited access to pharmacy within the Midwest

using my final sample of 802 townships. The percentage of towns with limited access to

pharmacy stores has surged from 20.44% to 28% (a 37% increase). In Figure C.3, I present

alternative definitions of limited pharmacy access, considering population weights and a

5-mile distance. These alternative specifications reveal qualitatively similar trends.

I also find heterogeneity in limited access to pharmacy by elderly population share. Figure

4.2 illustrates that non-elderly townships maintained relatively stable figures, while elderly

townships-those where more than 20% of the population is aged 65 or older a marked increase

in limited pharmacy access, rising from 14.29% in 2000 to 25.44% in 2019. Given that

elderly townships are particularly vulnerable to pharmacy access challenges, this raises public

concern over easy prescription access in elderly towns.

To shed light on these trends, Table 4.1 provides insights into the types of pharmacies

that have exited townships, leaving them without any available pharmacies. The table re-

veals that a significant 86.82% of the stores exiting the market were independently owned

pharmacies. In other words, independently owned pharmacies played a crucial role in pro-

viding prescription accessibility in rural areas. Had these independently owned pharmacies

managed to sustain their operations, the surge in pharmacy deserts would likely have been

less pronounced.

24Non-adherence happens when patients don’t follow their medication instructions. It’s especially common
among those taking many different drugs, like older adults who often have multiple health conditions. Not
taking medicine correctly can increase death risks and lead to more use of other health services, like hospital
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Figure 4.1: Trends in Limited Pharmacy Accessbility

png/rates_pharmacy_desert.png

Notes: The data points represent a three-year moving average based on the limited pharmacy access, taken
from a final sample of 802 townships. A township is designated as a limited pharmacy access (indicator
value of 1) if there are no independent or chain pharmacies within its boundaries.

Figure 4.2: Trends in Pharmacy Deserts by Elderly/Non-Elderly Township

png/rates_pharmacy_desert_age.png

Notes: The data points are based on a three-year moving average, showcasing limited pharmacy access from
a sample of 802 townships. A township receives an indicator value of 1 for limited pharmacy access if it has
no independent or chain pharmacies within its boundaries. Townships with over 20% of their population
aged 65 or older are classified as ”elderly”, while those with less than 20% are termed ”non-elderly”.
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Table 4.1: Exits of Last Pharmacies in Rural Townships Resulting in Limited Pharmacy
Accessibility

The number of chain pharmacies Total
The number of independent pharmacies 0 1
0 0 54 54
1 362 2 369
2 7 0 7
Total 369 56 425
Percentage 86.82% 13.18% 100%

Notes: This table details the distribution of independent and chain pharmacies from the previous year. Towns
without these pharmacies in the subsequent year are classified as having limited pharmacy accessibility due
to these exits.

Summary Statistics

Table 4.2 and 4.3 provide descriptive summary statistics of my final sample, which com-

prises 291 non-elderly townships and 511 elderly ones for twenty years, with a total 16,040

market-level observations(802 towns * 20 years)25. Elderly townships typically have a smaller

population than non-elderly townships, which typically results in lower market demand. As

chain pharmacies prefer to enter markets with higher demand, elderly townships have more

independent pharmacies on average. This highlights that independent pharmacies play an

important role in providing prescriptions in rural towns.

While demographics remain relatively stable over time for both groups of townships,

the pharmacy industry has undergone significant changes. Over the past two decades, the

number of chain pharmacies within a 15-mile radius has doubled for both groups of townships.

In contrast, the number of independent pharmacies in elderly townships declined, a trend

not observed in non-elderly townships, which aligns with previous findings.

In the subsequent section, I study the prevalence of limited accessibility to pharmacy in

the Midwest United States. I focus on understanding the mechanisms driving the increasing

trend in pharmacy deserts through the lens of competition, with a particular emphasis on

the entry of chain pharmacies.

4.4 Market Structure

The entry of chain pharmacies has profoundly transformed the landscape of the retail phar-

macy market, introducing a new competitive format and challenges for independently owned

stays or emergency room visits. This behavior can waste resources and harm the patient’s health.
25For a full list of variables, Appendix D.2 and D.2 provide descriptive statistics of my final sample. I

show key selected variables for brevity in main Table 4.2 and 4.3.
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Table 4.2: (Selected) Descriptive Statistics: Non Elderly Township

Panel A. Year 2000-2009 Panel B. Year 2010-2019
Variable Frequency Mean S.D Median Min Max Mean S.D Median Min Max
Township-level variables
Pop.a Decennial 2077 1578 1775 114 14388 2087 1592 1826 123 14738
Income per Capitab Decennial 16410 3012 16455 8360 35705 20912 4450 20807 10306 42282
Prop. Age over 65c Decennial 0.159 0.03 0.17 0.05 0.20 0.168 0.04 0.17 0.05 0.37
Prop. Female Decennial 0.507 0.02 0.51 0.39 0.62 0.502 0.02 0.50 0.31 0.55
Prop. Black Decennial 0.011 0.05 0.00 0.00 0.50 0.011 0.05 0.00 0.00 0.52
Prop. Vehicle = 0 Decennial 0.071 0.06 0.06 0.00 0.54 0.065 0.07 0.05 0.00 0.72
Pharmacy Desertd Annual 0.342 0.47 0.00 0.00 1.00 0.341 0.47 0.00 0.00 1.00
Ind. Pharmacies (Town)e Annual 0.671 0.55 1.00 0.00 2.00 0.646 0.58 1.00 0.00 2.00
Chain Pharmacies (15 miles)f Annual 0.746 1.12 0.00 0.00 7.00 1.382 1.73 1.00 0.00 7.00

County-level characteristics
Physician Offices Annual 9.425 11.46 5.00 1.00 96.00 9.155 10.66 5.00 1.00 83.00

State-level characteristics
Prop. Insurance Age 18-64g Annual 0.871 0.02 0.87 0.83 0.93 0.873 0.04 0.87 0.79 0.97
Prop. Insurance Age over 65g Annual 0.992 0.01 0.99 0.97 1.00 0.991 0.01 0.99 0.96 1.00

Ind. Pharmacies characteristics Annual
Employee Annual 6.693 9.938 6 0 400 6.591 4.166 6 0 50
Years in business Annual 5.787 3.364 6 0 12 10.201 6.971 11 0 22

N 2,910 2,910

Notes: “Non Elderly township” is defined as townships with an age over 65 population ratio lower than 20% in the year 2000. A
comprehensive list of descriptive statistics for the final dataset can be found in Appendix A. “Decennial” implies that the census is
conducted every ten years. “Annual” indicates that updates are made on a yearly basis. a “Pop.” refers to the total population of each
township. b “Income per Capita” represents the median income of each township. c “Prop.” stands for the proportion of a specific
demographic group within the population. d “Pharmacy deserts” is a binary variable taking the value 1 if there are no available
pharmacies within the township. e “Ind. Pharmacy” denotes the average number of independent pharmacies within the township. f

“Chain Pharmacy” denotes the average number of chain pharmacies within a 15-mile radius of the centroid of township. g “Prop.
Insurance” refers to the ratio of the population within each age groups enrolled in health insurance.

Table 4.3: (Selected) Descriptive Statistics: Elderly Township

Panel A. Year 2000-2009 Panel B. Year 2010-2019
Variable Frequency Mean S.D Median Min Max Mean S.D Median Min Max
Township-level variables
Pop.a Decennial 1434 725 1307 153 4859 1385 732 1227 117 4745
Avg. Incomeb Decennial 16807 2206 16721 10022 27227 21345 3417 21202 12156 37437
Prop. Age over 65c Decennial 0.262 0.05 0.25 0.20 0.48 0.246 0.05 0.24 0.10 0.49
Prop. Female Decennial 0.528 0.02 0.53 0.37 0.59 0.518 0.02 0.52 0.29 0.62
Prop. Black Decennial 0.002 0.01 0.00 0.00 0.08 0.004 0.01 0.00 0.00 0.17
Prop. Vehicle = 0 Decennial 0.076 0.03 0.07 0.00 0.22 0.062 0.04 0.06 0.00 0.25
Pharmacy Desertd Annual 0.178 0.38 0.00 0.00 1.00 0.224 0.42 0.00 0.00 1.00
Ind. Pharmacies (Town)e Annual 0.841 0.52 1.00 0.00 2.00 0.715 0.58 1.00 0.00 2.00
Chain Pharmacies (15 miles)f Annual 0.357 0.78 0.00 0.00 6.00 0.676 1.16 0.00 0.00 7.00

County-level characteristics
Physician Offices Annual 5.699 8.90 3.00 1.00 80.00 6.622 10.07 3.00 1.00 80.00

State-level variables
Prop. Insurance Age 18-64g Annual 0.878 0.02 0.88 0.83 0.93 0.879 0.04 0.88 0.79 0.97
Prop. Insurance Age over 65g Annual 0.993 0.01 0.99 0.97 1.00 0.991 0.01 0.99 0.96 1.00

Ind. Pharmacies characteristics
Employee Annual 5.904 4.074 5 0 71 6.170 3.958 5 0 71
Years in business Annual 6.081 3.324 6 0 12 12.390 6.711 14 0 22

N 5,110 5,110

Notes: “Non-elderly township” is defined as townships with an age over 65 population ratio lower than 20% in the year 2000. A
comprehensive list of descriptive statistics for the final dataset can be found in Appendix A. “Decennial” implies that the census is
conducted every ten years. “Annual” indicates that updates are made yearly. a “Pop.” refers to the total population of each township.
b “Income per Capita” represents the median income of each township. c “Prop.” stands for the proportion of a specific demographic
group within the population. d “Pharmacy deserts” is a binary variable taking the value 1 if there are no available pharmacies within
the township. e “Ind. Pharmacy” denotes the average number of independent pharmacies within the township. f “Chain Pharmacy”
denotes the average number of chain pharmacies within a 15-mile radius of the centroid of a township. g “Prop. Insurance” refers to
the ratio of the population within each age group enrolled in health insurance.
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pharmacies. Following the classification by Grieco (2014), independently owned pharmacies

are defined as either single stores or those sharing a parent company with fewer than three

stores. Chain pharmacies encompass two distinct formats: standalone retail pharmacies

(e.g., Walgreens) and supermarket-based pharmacies (e.g., Pharmacy).

As an illustrative case, I present a snapshot of changes in the pharmacy market envi-

ronment due to the entry of new chain pharmacies over time. Figure 4.3 focuses on Super

Township in Kansas, which is shaded in gray. In this figure, each red circle denotes indepen-

dent pharmacies, and each blue star denotes chain pharmacies. Each boundary delineates a

township, averaging around 29 square miles in size and 5.5 miles in width, in line with the

typical dimensions of townships in the current dataset. In 2000, there was one independent

pharmacy in the town, accompanied by one chain pharmacy within a 15-mile radius from

the centroid of town. By 2009, the market experienced more chain pharmacy entry, with

a total of three chain pharmacies actively operating. By 2019, more chain pharmacies had

entered, bringing the total to six within the 15-mile radius. Due to intensified competition

from these chain pharmacies, the independent pharmacies in Superior Township shut down.

After the independent pharmacy left markets in 2019, the town was classified as a “limited

access to pharmacy” area. Based on Figure 4.3, I summarize the following observations:

1. Chain pharmacies are more abundantly and densely situated in high-demand areas,

such as shopping malls.

2. The new entry of chain pharmacies is associated with the exit of independent phar-

macies.

3. The decline of independent pharmacies is associated with the more prevalent limited

pharmacy accessibility at the town level.

To see the overall patterns, Figure 4.4 illustrates the negative correlation between inde-

pendently owned pharmacies and chain pharmacies by documenting the average number of

stores in the final same over the period 2000-2019. Within towns, the average number of

independently owned pharmacies decreased by 0.18 whereas the average number of chain

pharmacies increased by 0.13 units, in total 0.05 units decreased. In line with anecdotal

evidence presented in Figure 4.3, the average number of chain pharmacies outside of town

to 15 miles increased by 0.38 units. It indicates that new chain pharmacy entries in distant

urban areas or shopping mall towns.

In Appendix Figure C.5, I also examine changes in the number of independent/chain

pharmacies by age group; elderly townships and non-elderly townships. In non-elderly town-

ships, independent pharmacies exited the market less frequently than in elderly townships,

despite the more pronounced increase in chain pharmacies outside of townships. This em-
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Figure 4.3: An Example: Spatial Distribution in Independent/Chain Pharmacy

png/plot_2000.png

(a) Year: 2000
# of Chain within 15 miles: 1

png/plot_2010.png

(b) Year: 2010
# of Chain within 15 miles: 3

png/plot_2019.png

(c) Year: 2019
# of Chain within 15 miles: 5

Note: The samples in this study are drawn from Superior Township in Kansas and their neighborhood,

covering the years 2000 to 2019. In the visual representation, Superior Township is highlighted in grey.

Independent pharmacies are marked with red circles, while chain pharmacies are indicated by blue stars.

The vertical labels represent latitude, and the horizontal labels denote longitude. This figure highlights

the following: 1. Chain pharmacies are more abundant and densely situated in high-demand areas, such

as shopping malls. 2. The decline of independent pharmacies has contributed to the growth of pharmacy

deserts in the US.
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Figure 4.4: (Average) Number of Independent/Chain Pharmacies between 2000-2019

png/distance_numbers_15.png

pirical finding suggests that the entry of new chain pharmacies might impact independent

pharmacies differently across age groups.

Finally, Figure C.6 shows changes in the market structure of independent pharmacies

by age group. Specifically, it examines the distribution of townships unserved, monopolies,

and duopolies among independent pharmacies. For both elderly townships and non-elderly

townships, monopolies are decreasing, while unserved areas are increasing. The changes are

greater in elderly townships, which is aligned with Figure C.5.

4.5 Reduced Form Evidence

In this section, I present evidence on the impact of chain pharmacies on local independently-

owned pharmacies. The goal is to evaluate whether or not the new entry of chain pharmacies

is associated with a decrease in the number of local independent pharmacies. I use the final

dataset between 2000 and 2019 for the analysis.

To provide a descriptive overview of the impact of chain pharmacies on independent

pharmacies, I document the distribution of active local independent pharmacies relative to

the presence of chain pharmacies within a 15-mile radius. Table 4.4 shows that towns with

nearby chain pharmacies have a 44.06% rate of un-served markets, in contrast to 25.60% in

towns without chain pharmacies in the vicinity. Furthermore, there is a notable reduction in

monopolies and duopolies run by independent pharmacies in these areas. Also, towns with

nearby chain pharmacies have a higher rate of unserved markets and fewer monopolies and

duopolies run by independent pharmacies. This suggests that chain pharmacies made less
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room for independent pharmacies.

Table 4.4: Distribution (of the Number) of Active Independent Pharmacies in Town
2000-2019 by the Number of Chain Pharmacies (%)

Number of chain pharmacies within 15 miles Total
Active independent pharmacies 0 1+ Overall
0 25.60 44.06 32.40
1 67.77 51.38 61.73
2 6.63 4.56 5.87
N 12,822 7,228 16,040

In Table 4.5, the distribution of active independent pharmacies is segmented by the age

profile of the townships (elderly or non-elderly) and further bifurcated by the proximity of

chain pharmacies. In non-elderly townships, the influence of chain pharmacies on indepen-

dent pharmacy distribution is subtle. When no chain pharmacies are nearby, 37.69% of the

areas do not have an independent pharmacy, 57.41% have one, and a mere 4.90% have two

or more. In contrast, with the presence of at least one chain pharmacy, the figures change

slightly to 39.94%, 55.75%, and 4.31%, respectively. This indicates that in non-elderly town-

ships, the proliferation of chain pharmacies has a small impact on the number of independent

pharmacies. On the other hand, the dynamics in elderly townships show a noticeable dif-

ference. Absent any chain pharmacies, 20.43% of the areas lack an independent pharmacy,

with a significant 72.20% having just one, and 7.37% with two or more. However, with the

introduction of a chain pharmacy, the distribution changes: 47.74% of the areas have no

independent pharmacy, 47.49% have a single store, and 4.77% have more than one. This

difference emphasizes the pronounced influence of chain pharmacies on the prevalence of

independent pharmacies in elderly townships.

Table 4.5: Distribution (of the Number) of Active Independent Pharmacies in Town
2000-2019 by Age Group (%)

Num. independent pharmacies
0 1 2+

Non Elderly Township
No Chain 37.69 57.41 4.90
Chain ≥ 1 39.94 55.75 4.31
Elderly Township ≥ 1,500
No Chain 20.43 72.20 7.37
Chain ≥ 1 47.74 47.49 4.77
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Table 4.6: The New Entries in Chain Pharmacies with Different Distances and the
Number of Independent Pharmacies.

(1) (2) (3) (4)
Independent Stores Independent Stores Independent Stores Independent Stores

I(Chain Entry=1, 0-5 miles) -0.446∗∗∗

(0.0402)

I(Chain Entry=1, 5-10 miles) -0.0569∗

(0.0255)

I(Chain Entry=1, 10-15 miles) -0.0274+

(0.0159)

I(Chain Entry=1, 15-20 miles) -0.00700
(0.00977)

Township FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Market × Year FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Observations 16040 16040 16040 16040
Mean of Dep. Variable 0.735 0.735 0.735 0.735
Adjusted R2 0.573 0.537 0.537 0.537

Note: Estimates are from fixed effects regressions of the new entry of chain pharmacies within different distances
on the number of independent pharmacies in township m and year t. Column (1) denotes the entry of chain
pharmacies within 5 miles, Column (2) denotes the entry of chain pharmacies between 5 and 10 miles, Column
(3) denotes the entry of chain pharmacies between 10 and 15 miles and Column (4) denotes the entry of chain
pharmacies between 15 and 20 miles. Significance levels are denoted by + p < 0.10, * p < 0.05, ** p <0.01, and
*** p < 0.001.

Specification of Distance to Chain Pharmacies

To inform whether the new entry of a chain pharmacy within a certain radius is associated

with competition in the independent pharmacy in the town, I regressed the number of

independent pharmacies on the new entry of chains with different mile radii from the centroid

of towns. Table 4.6 provides suggestive evidence that considering the new entry of a chain

within 15 miles may be suitable for modeling independent pharmacy entry/exit. Outside of

15 miles, the effects are not statistically significant.

Effects on Market Structure

Next, I conduct an event study to present the effects of chain pharmacy entry over the years

before and after their introduction. In this regression, I estimate:

Ymt =
∑
τ

δτEntrym,t−τ + βXmt + λm + αt + γst + ϵmt (4.1)

where Entrym,t denotes a dummy variable for whether a chain store has entered location
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m by period t. The outcome of interest variables Ymt denotes the number of independent

pharmacies at township m in period (year) t. I control for township-level demographics

Xmt, unobserved township-level fixed effects λm, and yearly time fixed effects αt. To control

time-varying unobserved heterogeneity, I incorporate market-year fixed effects γst where s

denotes the state level. I focus only on binary specification, meaning that Entrymt takes the

value 1 if chain stores enter and 0 otherwise, instead of the number of entries. 26

As the entry of chain pharmacy is heterogeneous across townships, this boils down to stag-

gered Difference-in-Difference with two-way fixed effects (TWFE) designs (e.g. Goodman-

Bacon (2021), Callaway and Sant’Anna (2021)). I address two issues: (i) heterogeneous

treatment effects in the presence of different timing of treatment, which can induce bias in

coefficients due to the use of different timing groups (early versus late-treated) as controls,

and (ii) pre-treatment effects. To do this, I run event studies that detect possible pre-trends

as well as robust to heterogeneous treatment timing.

My preferred TWFE models are those by de Chaisemartin and D’Haultfoeuille (2023)

because de Chaisemartin and D’Haultfoeuille (2023)’s approach can accommodate one-shot

treatment with heterogeneous treatment periods (e.g. Hurricane in different dates). Figure

4.5 shows that both the standard TWFE and the de Chaisemartin and D’Haultfoeuille

(2023) methods indicate an absence of statistically significant effects in terms of pre-trends.

However, post-treatment shows that the entry of chain pharmacies is associated with a

decreased number of independent pharmacies in the township. In Appendix Figure C.7,

I also provide the results using alternative weights on heterogeneity-robust estimators by

Borusyak et al. (2021), Callaway and Sant’Anna (2021), and Sun and Abraham (2021).

These results show that alternative ways of constructing weights for event study are robust

to my preferred TWFE design.27

4.6 Preliminary Analysis

To demonstrate how entry and exit patterns change with the rival’s independent store, I

present the data patterns using simple logit regressions.

An independent firm in marketm makes a binary decision of each firm aimt = (0, 1) where

aimt = 0 if firm i being active in market m period t and aimt = 1 if i being inactive. I also

include a binary variable of whether states adopted Medicaid expansion policy afterwards

26In my final sample, when an entry event occurs, 88% of entries were the entry of one chain pharmacy.
27See Appendix for similar exercises for subsamples: non-elderly townships in Figure C.8 and elderly

townships in Figure C.9. Consistent with earlier findings, the effects of new chain entries are larger in
elderly townships. Non-elderly townships have somewhat mixed results, so in the structural analysis in the
next section, I separately recover parameters of interest in the two distinct township types: non-elderly and
elderly.
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Figure 4.5: Event Study: The effects of chain pharmacy entry on local independent
pharmacy

png/TWFE_full.png

Note: Coefficient plots from event-study difference-in-differences analyses that regress the num-

ber of independent pharmacies in a township on year fixed effects, county fixed effects, control

variables, and market× year fixed effects. The sample consists of 802 townships between 2000 and

2019. The omitted baseline period is t = −1, which is the last pre-treatment period. Standard

errors are clustered at the county level and error bars represent 95 confidence intervals.
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2014. As these regressions do not take into account the simultaneous entry of rival firms,

the results do not reveal causality, but correlation.

Table 4.7: Logit Regression on Independent Pharmacy’s Entry.

(1) (2)
I(Rival Store=1) -3.273∗∗∗ -3.293∗∗∗

(0.176) (0.178)

Chain Pharmacies within 15 mi -0.543∗∗∗ -0.526∗∗∗

(0.0713) (0.0727)

Pharmacy’s Employee Size 1.951∗∗∗ 1.965∗∗∗

(0.222) (0.224)

Rival’s Employee Size -1.222∗∗∗ -1.210∗∗∗

(0.259) (0.259)

Total Pop. 0.972∗∗∗ 0.966∗∗∗

(0.221) (0.221)

Income Per Capita 0.0418 0.262
(0.290) (0.464)

Physician Offices -0.00292 0.0295
(0.133) (0.134)

Prop. Age over 65 5.772∗∗ 5.734∗∗

(1.930) (1.926)

Prop. Female 4.086 4.056
(4.021) (4.052)

Prop. Black -7.822 -7.379
(6.323) (6.414)

Prop. - High School Graduates -0.975 -0.859
(1.358) (1.367)

Prop. Unemployment -1.586 -1.220
(1.961) (2.064)

Prop. Vehicle = 0 5.855∗∗ 5.869∗∗

(1.798) (1.837)

Medicaid Expansion 0.218∗∗ 0.0781
(0.0822) (0.112)

Prop. Insurance Age over 65 -1.483 -5.553
(3.096) (3.439)

County FE Yes Yes
Year FE No Yes
Observations 32,040 32,040
Mean of Dep. Variable 0.367 0.367
Adjusted R2 0.348 0.350

Notes: Binary Logit estimates of stay-in/out in township m and year t. These
Results do not control for the endogeneity of decisions between small inde-
pendent pharmacy stores. Standard errors are clustered at the county level.
Significance levels are denoted by + p<0.10, * p<0.05, ** p<0.05.*** p<0.01.

Table 4.7 reports the result of a logit model on entry, controlling for chain pharmacies

within 15 miles, demographic variables, and health-related characteristics. First, the pres-
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ence of rival stores in the same town is strongly negatively correlated with entry decisions.

That is, the presence of a rival might substantially lower the latent payoff of being active,

which explains why it is important to capture the primary competitor - the rival. Second, the

number of chain pharmacies is negatively correlated with entry decisions, but weaker than

the competition effects from the rival. It means that chain pharmacies might offer different

types of services (e.g., higher qualities, better in-network-premium) so chain pharmacies are

more like a secondary competitor. Interestingly, my findings are similar to Grieco (2014) in

that the magnitude of the effect of chain supermarkets is smaller than that of independent

groceries.

5 Structural Analysis

In this section, motivated by reduced-form analysis, I present a structural model of indepen-

dent pharmacies and report the estimation results of the model.

5.1 Model Primitive

I model the entry decision of an independently owned pharmacy as a discrete-time, simultaneous-

move game. Each year, every store decides whether to be active or inactive in the market.

I focus on duopoly markets because 99.30% of my samples contain at most two operating

independent pharmacies.

I assume that the information structure of the games between independent pharmacies

follows incomplete information, as in Assumption 2.1. Each player observes her own private

information while she cannot observe that of her rival. Instead, she knows the distribution

of her rival’s private information. Allowing players to have private information significantly

reduces the computational costs of estimation.

The model also assumes that the entry of chain pharmacies is given from the perspective

of independent pharmacies. This is a reasonable assumption for rural independent pharmacy

market settings because the decision for chain pharmacies to enter is more likely driven by the

broader demographics of larger regions, their network structures, and where their distribution

centers are located. The competition from small independent stores is less of a concern for

the national chain pharmacies. Therefore, the model is greatly simplified by assuming that

decisions made by national chains are given to local independent stores. These approaches

are used in other studies examining the strategic interaction between local stores. (Ackerberg

and Gowrisankaran 2006, Grieco 2014). 28 Based on the empirical evidence in Table 4.6, the

28Alternatively, one can consider a comprehensive model of the endogenous entry of independent phar-
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analysis focuses on the number of chain pharmacies within a 15-mile radius of town centers.
The store’s choice-specific value function when active in the market depends on the beliefs

over a rival’s binary choices a−i in market m at period t:

uimt(aimt = 1, dmt, ϵimt(1); θ) =
∏
i

(aimt = 1, dmt; θ) + ϵimt(1).

= σ−i(a−imt = 1|dmt)πi(aimt = 1, a−imt, dmt; θ) + (1− σ−i(a−imt = 1|dmt))πi(aimt = 1, a−imt, dmt; θ) + ϵimt(1).

(5.1)

where σ−i(a−imt = 1|dmt) is the probability of rival’s being active, conditional on observable

market characteristics dmt. θ denotes the set of structural parameters affecting the phar-

macy’s per-period payoff, and ϵimt(1) denotes being active-specific private information for

pharmacy i. I further assume that the value of being inactive is normalized to zero.

Equilibrium Concept

I focus on the Bayesian Nash equilibrium, where a store’s choices are the best responses

conditional on its belief about the rival. Under the rational expectation assumption in Section

2, each store forms correct beliefs about the rival and observes its own private information,

but not its rival’s. Pharmacy stores observe the distribution of the rival’s private information,

which I assume follows a Type 1 Extreme Value Distribution. Each firm’s strategy is a

function of the probability of a rival’s entry, the observed state variable, and its private,

choice-specific shocks. Because econometricians cannot observe private information, the

optimal strategy can be expressed as choice probabilities:

σ∗
i (aimt = 1|dmt, σ

∗
−i) =

exp(
∏

i(aimt = 1, dmt))

1 + exp(
∏

i(aimt = 1, dmt)
(5.2)

Given the equilibrium above, each player’s decision is illustrated in Figure 5.1.

macies and chain pharmacies. The decision of each merchandise-based pharmacy (e.g., Walmart, Costco,
and Sam’s Club) depends on pre-existing merchandise department stores, distribution centers, and network
effects with nearby department stores. However, considering such factors requires a very complicated method
like Holmes (2011) or Jia (2008). These models have clear limitations: they cannot capture strategic in-
teraction with other chain pharmacies due to the way they are developed. Moreover, from the perspective
of giant chains like Walmart, their internal network structure would likely take precedence over consider-
ations regarding a small, local independent pharmacy. In addition, the decision-making of these big-box
stores might be fundamentally different from that of rural independent stores. Given the size of the stores,
a dynamic setting might be more suitable, which would require a separate model for the national chains.
More importantly, the goal of this paper is to understand the effect of the entry of chain pharmacies on the
landscape of the rural market, not to understand the expansion of chain pharmacies. For these reasons, it is
beyond the scope of this paper to consider the endogenous entry model of chain pharmacies with a properly
defined structural model
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Figure 5.1: Timing of the Game
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5.2 Discussion

Before presenting the estimation procedure and discussing the results of the structural esti-

mation, I provide a detailed discussion of the assumptions for the structural model.

Static versus Dynamic

I model the discrete choice of an independent pharmacy as a static game for the following

reasons. First, if the entry costs (including fixed sunk costs) of entering the industry are

substantial, it might be suitable to consider a dynamic model. As the dynamic model can

differentiate between sunk costs and fixed costs, it can accommodate forward-looking behav-

iors observed in manufacturing (e.g., the cement industry Ryan (2012)) and the hardware

industry (Igami and Uetake (2020)). However, anecdotal evidence from pharmacy industry

reports suggests that the sunk costs of opening independent pharmacy stores are relatively

small compared to the yearly gross profits from running stores, as shown in Appendix Table

C.329. This implies that sunk costs may not be substantial. The static approach to studying

pharmacies has been utilized in other studies (Aradillas-López and Gandhi (2016)). Next,

Appendix Table C.4 documents the regression of past entries of chain pharmacies on the

number of independent pharmacies in township m at period t. After controlling for the

number of chain pharmacies in the same year, the behavior of independent pharmacies does

not change, suggesting that past chain entry may be negligible. Based on this observation, I

assume that a player’s payoff depends only on current state variables, not on state variables

from past periods.

29Source: Elabed et al. (2016). The industry report indicates that the dollar metrics of entry’s sunk costs
constitute a relatively smaller portion of yearly profits. Specifically, the components of sunk costs of entry
are approximately $107,000, and yearly gross profits are around $748,000, thus the ratio of entry’s sunk costs
to gross profits is around 14.3%.
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Identification

To achieve identification, as discussed in Bajari et al. (2010b), I adopt firm-specific variables

that have been utilized in existing works. For example, Grieco (2014) used the existence of

a two-year-old firm as a shifter for independent grocery stores. To alleviate concerns regard-

ing endogenous entry, I instead use employment size from three years ago. The suggested

exclusion restriction is valid if the revenue of an operating store increases with respect to the

number of employees but is unrelated to the profits of rival stores. The underlying assump-

tion is that a store’s profit can be affected by its own employment, while the employment

of rival stores will impact a store’s profit only through the rival’s choice of remaining in the

market.30

Assumption: Isolated Market

Pioneered by Bresnahan and Reiss (1991), the literature on strategic interaction typically

focuses on isolated markets with few firms. If independent pharmacies outside of the township

influence the entry/exit of independent pharmacies within the township, then the assumption

is likely to be invalid. To address this concern, I observe the following. The average distance

between town boundaries is 14 miles which ensures far enough distance between markets.

This evidence suggests that most towns in my final sample are closer to being isolated

markets. Additionally, Table 5.1 presents the regression of new independent pharmacy entry

outside of the township on the number of independent pharmacies within the town, including

market characteristics, town fixed effects, year fixed effects, and market × year fixed effects.

Table 5.1 provides suggestive evidence that the new entry of independent pharmacies in

nearby towns (outside of the township) might have little impact on independent pharmacies

within the township.

5.3 Estimation Method: Two-Step Estimators

I use a two-step estimator to recover underlying structural parameters of interest. Specifi-

cally, in the first stage, I obtain reduced-form estimates of beliefs over the rival’s CCP from

the data. In the second stage, I use the rival’s CCP, observed market characteristics, chain

pharmacy effects, and firm-specific shifters to construct moment conditions. Finally, I min-

imize these moment conditions over a set of candidate structural parameters. Additionally,

I estimate the model separately using the sample of elderly and non-elderly towns, as I

30Following this shifter, I decompose notation dmt = dimt, d−imt, dxmt, where dimt denotes store i specific
shifter, d−imt denotes store −i specific shifter, and dxmt denotes the common market characteristics, which
could be extended into many covariates.
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Table 5.1: Entries in Neighborhood (outside of township) and the Number of
Independent Pharmacies.

(1)
Independent Pharmacies

(Independent Pharmacy Entry Outside of Town Boundary=1) -0.0131
(0.0198)

Township FE Yes
Year FE Yes
Market × Year FE Yes
Controls Yes
Observations 16,040
Mean of Dep. Variable 0.735
Adjusted R2 0.534

Note: Estimates are from fixed effects regressions of the new entry of
independent pharmacies outside of township (within 10 miles) on the
number of independent pharmacies in township m and year t. Standard
errors are clustered at the town level. Significance levels are denoted by
+ p<0.10, * p<0.05, ** p<0.05.*** p<0.01.

find substantial heterogeneity in market dynamics in the previous section. This approach is

widely used in the industrial organization literature. (e.g., Ellickson and Misra (2008)).

Time-Varying Unobserved Endogenous Variables: I attempt to address the issues

discussed in Berry and Compiani (2023) for both the estimators of Bajari et al. (2010b) and

Orthogonal estimators. Berry and Compiani (2023) demonstrated that the first-stage esti-

mation of choice probabilities should not be adversely affected by the presence of unobserved

and time-varying endogenous state variables. To address this issue, I employ three distinct

strategies. First, I include county-fixed effects to control for time-invariant, unobserved,

market-specific shocks. 90 percent of my final sample experienced a population change of

less than 250 people between the 2000s and the 2010s, which means that demographics are

quite stable over the years. This implies that the county-fixed effects capture much of the

unobserved heterogeneity. Second, if one is willing to agree that stores make optimal hiring

decisions spontaneously in response to changes in market characteristics, labor employment

might capture much of the time-varying, unobserved market characteristics. Third, I also

include state Medicaid expansion, a policy-relevant variable, as suggested by Berry and Com-

piani (2023). In the logit regression result of the independent pharmacy’s entry in Table 4.7,

the expansion of Medicaid coverage has a positive and significant effect on entry, while this

effect becomes insignificant when including year-fixed effects as in column (2). This suggests

that both year-fixed effects and county-fixed effects absorb much of the unobservable market
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characteristics.

Estimation method: For comparison, I present the result using two different esti-

mators: Bajari et al. (2010b)’s estimators with a few pre-selected variables and developed

orthogonal estimators using flexible ML methods with many covariates. The main differences

in estimation algorithms between the two estimators are 1) the set of control variables used,

2) the use of the Machine Learning estimator, and 3) the use of a cross-fitting algorithm.

The details of the estimation algorithm are as below.

5.3.1 Bajari et al. (2010b)’s approach

First Stage Nuisance Parameter γ−i Estimation: The goal is to recover reduced-form

beliefs over the rival’s equilibrium CCP from the data. The reduced-form estimates of CCP

take the form of conditional expectation:

γ̂−imt = E[a−imt|cmt, d−imt, dimt, d
pre
xmt, yt, countyf ] (5.3)

where a−imt denotes the rival’s binary choice, cmt represents the number of chains within 15

miles, d−imt indicates the rival’s shifter, which is the number of the rival’s employees, dimt

denotes player i’s shifter, which is the number of employees, dprexmt denotes common market

characteristics, yt represents the year fixed effects, and countyf represents the county fixed

effects.31 For dprexmt, I assume that only a relatively small number of pre-selected market

characteristics are relevant for independent pharmacies’ payoffs, as in the previous empirical

IO/health literature. I employ a simple logit model to estimate the conditional expectation

of equation 5.3.

After recovering the equilibrium strategies from the data, the goal of the second stage

is to estimate the structural parameters of interest. First, I construct standard empirical

models of entry and market structure to describe the moment conditions. Since I lack data

on prices and quantities, I model the profit functions in a reduced-form manner, following

the conventional approach in static entry literature (e.g., Berry (1992), Seim (2006)). The

average period profit per store in market m in period t is characterized as follows:∏
i

(aimt = 1, γ̂−imt, cmt, dimt, d
pre
xmt, yt, countyf ; θ) =

γ̂−imtθγ + cmtθc + dimtβd + dprexmt · βx + αtyt + αcountycountyf (5.4)

where γ̂−imt represents beliefs about the rival’s CCP.

31I choose county-level fixed effects, as town-level fixed effects are too granular; some estimates did not
converge due to too many fixed effects in a simple conditional logit model
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Second Stage Structural Parameter Estimation: I construct the logit-likelihood

function, as developed by Bajari et al. (2010b) and Bajari et al. (2013). The logit-likelihood

function depends on the profit function given in equation (5.4) and equilibrium function

(5.2), and estimates a set of parameters:

argminθγ ,θc,βd,βx,αt,αcounty
lnL =

∑
t

∑
m

∑
i

aimtln

(
Λimt

(∏
imt

))
+ (1− aimt)ln

(
1− Λimt

(∏
imt

))
(5.5)

where

Λimt

(∏
imt

)
=

exp
∏

imt

1 + exp
∏

imt

Here, Λ represents the standard logit link function under Type 1 Extreme Value Distribution.

The consistency and asymptotic normality of the estimator have been established by Bajari

et al. (2010b). I account for correlation in error terms by taking the clustered standard error

at the county level.

5.3.2 Neyman Orthogonal Estimators

Neyman Orthogonal estimators facilitate the use of flexible ML methods, which perform

well in prediction, and also relax assumptions regarding the data-generating process. Con-

sequently, I do not pre-select socio-economic variables, utilizing instead the pool of variables

dpoolxmt as shown in the summary statistics Table D.2 and Table D.2.

Nuisance Parameter Estimation

Estimation of γ−i: I implement ML classifiers to obtain conditional expectations using

a richer pool of demographics:

γ̂−imt = E[a−imt|cmt, d−imt, dimt, d
pool
xmt, yt, countyf ] (5.6)

Estimation of (βd, βx): Given γ̂−imt in hand, I estimate the nuisance parameters βd and

β. I accommodate flexible interactions between these richer independent variables dinteractionxmt .

Due to the nature of high-dimensional settings, I construct the following Logit Lasso speci-

fication:

(θ̂γ, θ̂c, β̂d, β̂x, α̂t, α̂county)
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∈ argminθγ , θc, βd, β, αt, αcounty

[
En[Λi(θγ , θc, βd, βx, αt, αcounty)] +

λ1

n
||(θγ , θc, βd, βx)||1

]
(5.7)

where λ1 denotes the ℓ1 penalty terms, trained by the 5-fold cross-fitting algorithm in the

R package ‘cv.glmnet’32.

Estimation of µγ, µc: While ML methods perform well in prediction, regularization

can induce biases in the structural parameters of interest. To obtain unbiased estimates of

these parameters, I employ the cross-fitting algorithm described in Section 3. Furthermore,

I construct and estimate the correction terms µγ and µc, following Section 3.3, associated

with the rival independent pharmacy effects θγ and the number of chain pharmacy effects

θc.

Structural Parameter Estimation: Given cross-fitted nuisance parameters η̂ = (γ̂−i, β̂x, β̂d, µ̂γ, µ̂c),

I construct orthogonal moment functions to obtain unbiased estimates of θγ, θc:

argminθγ ,θcψ(wi; θ, η) = E

(µγ, µc)[aimt − σimt]︸ ︷︷ ︸
=m(wimt;θ,η)

−(αγ, αc)[a−i − γ−i]

 (5.8)

where σimt = Λ(γ̂−imtθγ + cmtθc + dimtβ̂d + dinteractionxmt · β̂x)

αγ = E[µγΛ(·)(1− Λ(·))θγ|dimt−3, cmt−3, d
interaction
xmt−3 ]

αc = E[µcΛ(·)(1− Λ(·))θγ|cmt−3, dxmt]

I further define M ≡ ∂m(w,γ,β,η)
∂θ

. The variance-covariance matrix has the following form:

V̂ =

(
1

K

K∑
k

E[M ]

)−1

1

K

K∑
k

E[ψ2(w, θ̂, η̂k]

(
1

K

K∑
k

E[M ]

)−1

I also employ county-level clusters to allow the correlation of error terms within the

county level. For summary purposes, Table 5.2 presents the specifications of the classical

methods and the orthogonal estimators developed in each estimation step. Additionally,

Table 5.3 provides a summary of the notation for parameters to be estimated and the data.

5.4 Estimation Results

First Stage Estimation Results

Table 5.4 reports the estimation results of reduced-form CCP γ−i based on Bajari et al.

(2010b)’s estimator. The suggested shifter, employment size in pharmacy shows expected

32As I want to keep the year fixed effects and county fixed effects, I do not allow penalty terms for these
two fixed effects
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Table 5.2: Summary of Specifications for Bajari et al. (2010b)’s Estimators and
Orthogonal Estimators

Estimators Stages Parameters Covariates Dim (Covariates) County & Year FE Method
Bajari et al. (2010b)

First Stage γ−imt cmt,dimt, d−imt, d
pre
xmt 13 Yes Simple Logit

Second Stage θγ, θc, θγ, βd, βx γ̂−i, cmt, dimt, d
pre
xmt 13 Yes Logit Likelihood

Orthogonal Estimators

First Stage γ−i cmt, dimt, d−imt, d
pool
xmt 35 Yes XG Boosting

First Stage βd, βx γ̂−i, cmt, dimt, d
pool
xmt, d

interaction
0mt 563 Yes Logit-Lasso

First Stage µγ cmt−3, dimt−3, d
pool
xmt−3, d

interaction
0mt−3 563 Yes Lasso

First Stage µc cmt−3, d
pool
xmt, d

interaction
xmt 563 Yes Lasso

Second Stage θγ, θc γ̂−i, cmtβ̂, µ̂γ, µ̂c 2 No Neyman Orthogonal Moment

Notes: pre denotes the pre-selected socio-economic variables. pool denotes the pool of richer socio-economic variables.
interaction denotes the interaction term between the dpool0 .

Table 5.3: Notation for Parameters and Data

Parameters Description
γ−i Beliefs over rival CCP
θγ The effect of rival independent pharmacy
θc The effect of the number of chain pharmacies within 15 miles
βd The effect of store-specific shifter: Employees Size
βx The effect of common market characteristics
Data Description
aimt Binary action of being active (aimt = 1) or being inactive (aimt = 0
cmt The number of chain pharmacy within 15 miles
dimt Player i specific shifter: Employees Size
d−imt Player −i specific shifter: Employees Size
dxmt Common market characteristics
dprexmt Pre-selected Common market characteristics

dpoolxmt Pool of richer Common market characteristics

dinteractionxmt Interaction of dpoolxmt
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signs. The number of employees in a pharmacy is positively correlated to the probability of

staying in the market, and the rival’s number of employees is negatively associated, meaning

that the number of employees might represent a proxy for sales and higher quality provision

by the pharmacy. As expected, the impact of the total population appears to positively affect

latent profits, as the total population can be a good proxy for the market size. The share of

the population over 65 also appears to positively affect latent profits because the population

over 65 may have higher demands for prescription drugs. Consistent with reduced-form

evidence, chain pharmacies are larger in elderly towns than in non-elderly towns.

Next, I present the estimation results of predicting a rival’s CCP using various ML

methods. To shed light on the choice of ML methods, Table 5.5 summarizes the findings of

applying various procedures and reports the out-of-sample (hold-out sample) accuracy level.

Not surprisingly, XG Boosting outperforms ordinary logit and other ML methods based

on linear models. Given this empirical pattern, I employ XG Boosting in my first-stage

estimates of CCP. I use shallow trees (max depth: 3) to adhere to theoretical rates O(n−1/4)

and use the “off-the-shelf” xgboost package in R. Luo et al. (2016) discuss the theoretical

limits for ℓ2 boosting models.

For comparison, in Appendix Figure C.10, I report the prediction performance in terms

of the area under the curve (AUC)33 in first-stage reduced-form CCP estimates in elderly

towns for Bajari et al. (2010b)’s style simple logit and the XG Boosting method. Compared

to logit methods, XG Boosting improves the AUC by more than 25%, effectively predicting

the rival’s stay-in decision. In Appendix Table C.5, I also present confusion matrices for

both elderly towns and non-elderly towns. The accuracy in both cases exceeds 0.95, an

outstanding performance given the complex nature of the games.

Table 5.6 showcases the primary factors driving outcomes, as identified by the XGBoost

model, in both elderly and non-elderly townships. For both town categories, employment

numbers by store and rival stores stand out as top determinants. In elderly townships,

the presence of chain pharmacies emerges as a notable contributor, while in non-elderly

townships, demographic attributes such as the female population and vehicle ownership gain

prominence. These differences underscore the heterogeneous socio-economic dynamics at

play in each town type.

33AUC denotes the area under the ROC (Receiver Operating Characteristic) curve, where ROC represents
the true positive rate against the false positive rate (FPR). The AUC provides an aggregate measure of model
performance across all possible classification thresholds. An AUC of 1 indicates a perfect model, while an
AUC of 0.5 signifies a model that is no better than random guessing. An AUC below 0.5 indicates the model
is performing worse than random guessing.
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Table 5.4: First Stage Reduced Form CCP: Classical Method Bajari et al. (2010b)

(1) (2)
Elderly Town Non-Elderly Town

Chain Pharmacies within 15 mi -0.421∗∗∗ -0.145∗∗

(0.0702) (0.0537)

Pharmacy’s Employee Size 3.396∗∗∗ 3.172∗∗∗

(0.390) (0.509)

Rival’s Employee Size -3.080∗∗∗ -2.028∗∗∗

(0.392) (0.488)

Total Pop. 0.568∗∗∗ -0.0480
(0.155) (0.188)

Income Per Capita 0.208 -0.527
(0.304) (0.475)

Physician Offices 0.0921 0.0101
(0.0863) (0.139)

Prop. Age over 65 -0.0954 5.279∗

(1.311) (2.587)

Prop. Female -0.382 8.551
(2.920) (5.324)

Prop. Black -4.145 -1.491
(5.639) (6.552)

Prop. - High School Graduates -0.107 -0.943
(0.812) (1.424)

Prop. Unemployement -1.429 -0.109
(1.309) (1.545)

Prop. Vehicle = 0 4.491∗∗ 1.962+

(1.389) (1.145)

Medicaid Expansion 0.0164 0.0462
(0.0771) (0.0984)

Prop. Insurance Age over 65 -0.141 -8.509∗

(2.117) (3.384)
County FE Yes Yes
Year FE Yes Yes
Observations 20,400 11,640
Mean of Dep. Variable 0.388 0.329
Adjusted R2 0.165 0.172

Notes: Binary Logit estimates of stay-in/out in township m and year t. Standard errors
are clustered at the county level. Significance levels are denoted by + p<0.10, * p<0.05, **
p<0.05.*** p<0.01.
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Table 5.5: Performance of Different Methods in First Stage CCP for Hold-Out Sample

Method County FE & Year FE Interaction Terms Prediction Performance (AUC)
Ordinary Logit Yes Yes 0.7533
Ridge Yes Yes 0.7608
Lasso Yes Yes 0.7861
Elastic Net Yes Yes 0.7852
XG Boosting Yes No 0.9539
Random Forest Yes No 0.8320
Support Vector Machine Yes No 0.6730

Notes: AUC denotes the area under the ROC(Receiver Operating Characteristic) curve,
where ROC denotes the value of the true positive rate against the false positive rate (FPR).
The AUC gives an aggregate measure of the model’s performance across all possible classifi-
cation thresholds. An AUC of 1 indicates a perfect model. An AUC of 0.5 indicates a model
that is no better than random guessing. If the AUC is less than 0.5, it means the model is
performing worse than random guessing.

Table 5.6: Top 10 Importance Features from Xg boosting

(a) Elderly Township

Feature Gain
1 #. Employment 0.764
2 #. Rival’s Employment 0.138
3 #. Chain Pharmacy 0.019
4 Log(Total Household) 0.010
5 Log(Total Pop.) 0.005
6 Unemployment Rates (%) 0.005
7 Rental Ratio (%) 0.005
8 Female (%) 0.004
9 Age over 65 (%) 0.003
10 Commuting: Walk (%) 0.003

(b) Non-Elderly Township

Feature Gain
1 #. Employment 0.738
2 #. Rival’s Employment 0.106
3 Female (%) 0.016
4 Vehicle=1 (%) 0.013
5 Rental Ratio (%) 0.010
6 Log(Total Pop.) 0.008
7 Log(Total Household) (%) 0.007
8 Black (%) 0.006
9 Log(Income Per Capita) 0.005
10 High School Graduate (%) 0.005

Notes: Results from Xg Boosting over within sample. I separately estimate in the elderly
township/non-elderly township. #. denote the number and % denotes the share of demo-
graphic groups out of the total population in the towns.
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Table 5.7: Results from the Structural Model: Elderly Town

Parameters Variables Bajari et al. (2010b) Orthogonal Estimators
θγ Rival independent pharmacies -5.420 -8.055

(0.685) (0.495)
θc No. of chain pharmacies -1.065 -1.138

(within 15 miles) (0.085) (0.057)
Observations 20,400 20,400
Pre-selection of Socio-Economic Controls Yes No
Interaction between Socio-Economic Controls No Yes
Dimension of Controls 13 563
Counties FE Yes Yes
Year FE Yes Yes

Second Stage Estimation Results

Table 5.7 and Table 5.8 respectively report the point estimates from the observed sample

along with standard errors for elderly and non-elderly towns, respectively. I account for

correlation in error terms by taking the clustered standard error at the county level.

Interpreting parameters could be challenging as in most discrete-choice models; nonethe-

less, several empirical findings emerge. The results suggest that the effect of the local rival

independent pharmacy appears to be stronger, which aligns with Grieco (2014). I also find

that the flexible ML method captures this interaction effect well, which is 1.5 times larger

than that identified by Bajari et al. (2010b). Importantly, this observation is consistent

for both elderly towns and non-elderly towns, as presented in Table 5.8. Additionally, the

estimated results suggest that the number of chain pharmacies has a relatively weak im-

pact on the value of profits for independent pharmacies in the market. Chain effects are

less pronounced in non-elderly towns, which aligns with reduced-form evidence. I interpret

this as an indication of the elderly population being more price-sensitive, given that chain

pharmacies may offer competitive prices.34

5.5 Robustness Check

I have conducted a series of robustness checks that are not reported in the main text. Since

the number of cross-fitting folds, K, does not have a rule of thumb, I experimented with an

alternative K = 4, which is also widely utilized in the debiased machine learning literature.

In Appendix Table C.8, I demonstrate that utilizing a different number of cross-fitting folds

yields quite similar results.

To explore the possibility that the choice of hyper-tuning parameters in XG Boosting

34Several channels exist for this theory: As the national chain has bargaining power over the insurance
company, they might offer lower prices. In addition, they can get more discounts through the bulk contracts.
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Table 5.8: Results from the Structural Model: Non-Elderly Town

Parameters Variables Bajari et al. (2010b) Orthogonal Estimators
θγ Rival independent pharmacies -4.000 -6.648

(0.449) (0.470)
θc No. of chain pharmacies -0.269 -0.258

(within 15 miles) (0.085) (0.015)
Observations 11,640 11,640
Pre-selection of Socio-Economic Controls Yes No
Interaction between Socio-Economic Controls No Yes
Dimension of Controls 13 563
Counties FE Yes Yes
Year FE Yes Yes

might not adequately capture beliefs over the rival’s choice, I attempted alternative hyper-

tuning with cross-validation methods. The results are qualitatively similar.

6 Counterfactual

The structural parameters I have estimated, combined with the underlying structural model,

enable me to perform counterfactual experiments. The counterfactual analysis simulates the

entry behavior of independent pharmacies to characterize new equilibrium outcomes under

different scenarios. As elderly towns have experienced rapid increases in limited access to

pharmacies, I focus on elderly towns in my counterfactual scenarios.

6.1 Solution Method for the Static Game

To conduct counterfactuals in different scenarios, I first solve for the equilibrium of the model

based on Equation 5.2. I employ a nested fixed-point algorithm, which solves the following

system of equations:

σi(aimt = 1|cmt, dimt, dxmt) =
eσi(a−imt=1|cmt,dimt,dxmt)θγ+cmtθc+diβd+dxmt·βx

1 + eσi(a−imt=1|cmt,dimt,dxmt)θγ+cmtθc+diβd+dxmt·βx
(6.1)

σ−i(a−i = 1|cmt, d−imt, dxmt) =
eσi(aimt=1|cmt,dimt,dxmt)θγ+cmtθc+dimtβd+dxmt·βx

1 + eσi(aimt=1|cmt,dimt,dxmt)θγ+cmtθc+dimtβd+dxmt·βx
(6.2)

Here, Equation 6.1 denotes the conditional choice probability (CCP) of player i, and Equa-

tion 6.2 denotes the CCP of player −i. Given the two unknowns (σi and σ−i) and the two

equations (Equations 6.1 and 6.2), I apply an iterative method. The iteration continues until

the difference between the kth iteration and the (k + 1)th iteration is less than a tolerance
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level, ϵ = 0.00001.35

6.2 Goodness of Fit

Figure 6.1 shows the overall predicted and observed number of independent pharmacies

between 2000 and 2019. Overall, the simulated outcome captures the downward-sloping

trend in the observed number of stores in elderly towns, but the simulated outcome slightly

overpredicts after 2016. I also report the average predicted number of stores and the observed

number of stores for each town, conditional on various socioeconomic characteristics, in

Appendix Table C.9. In line with the overall trends, the predicted averages for stores closely

resemble the observed counts.

6.3 Counterfactual 1

In the first counterfactual scenario, I use the counterfactual Bayesian Nash Equilibrium to

simulate a situation where chain pharmacies are restricted from expanding starting after-

wards 2000. The primary aim of this simulation is to quantify the extent to which indepen-

dent pharmacies stay in the market in 2019 with the absence of new entry of chain pharmacies

after 2000. Table 6.1 reports the results of the counterfactual which highlights two things:

1) The counterfactual predictions suggest that, in the absence of chain pharmacy expansion,

the average number of stores in total markets would increase. Counterfactual experiments

indicate that, without the expansion of chain pharmacies, there would be a rise in the aver-

age number of total market stores. Specifically, the expected store count would see an uptick

by 10.40%. Notably, between 2000 and 2019, the count of independent pharmacies dropped

by 26.6%. The entry of new chain pharmacies accounted for 40% of this variation.

I also examine the variations in these changes across different market types. M I observe

the following: towns with larger populations, higher proportions of elderly residents, and a

greater percentage of households without a vehicle would have had more independent stores.

This suggests that in towns with an elderly population and limited transportation options,

pharmacy accessibility might have been enhanced if chain pharmacies hadn’t entered the

market after 2000.

35I initiate the process with the estimated values of γ−i. As long as I use observed choice probabilities as
input, I did not encounter multiple equilibria.
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Figure 6.1: Goodness of Fit: Elderly Town

png/goodness_fit.pdf
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Table 6.1: Expected Number of Stores under Counterfactual Scenario 1 (Year: 2019)

(Average) Independent Pharmacy Counts
Predicted CF S1 △ △%

Total Markets 0.672 0.742 0.070 10.42
Total Population
Below median (1,226) 0.588 0.592 0.004 0.68
Above median (1,226) 0.780 0.890 0.110 14.10

Prop. Vehicle=0
Below median (0.055) 0.668 0.702 0.034 5.09
Above median (0.055) 0.690 0.780 0.090 13.04

Prop. under Poverty Line
Below median (0.12) 0.640 0.722 0.082 12.81
Above median (0.12) 0.736 0.760 0.024 3.26

Share of Age over 65
Below median (0.24) 0.682 0.726 0.044 6.45
Above median (0.24) 0.686 0.756 0.070 10.21

Presence of Chain Pharmacy in 2000
No chain pharmacy within 15 miles 0.700 0.740 0.040 5.71
Chain pharmacy present within 15 miles 0.614 0.750 0.136 22.15

Minority Group
Below 10% 0.682 0.738 0.056 8.21
Above 10% 0.732 0.800 0.068 9.29
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6.4 Counterfactual 2: Providing Subsidy associated with Medi-

care in Elderly Town

The second scenario investigates the potential outcomes of providing subsidies to independent

pharmacies in elderly towns. For context, I reference the Health Professional Shortage Area

Physician Bonus Program (HPSAPB), which provides a 10% subsidy on Medicare-covered

services to physicians in a designated HPSAPB region. Analogously, I explore the possibility

of increasing access to pharmacies within elderly towns by providing pharmacists with a 10%

subsidy for prescriptions associated with Medicare beneficiaries. To simulate this policy, I

factor the subsidies into my estimated latent profits by calibrating the revenue share from

Medicare.36 Subsequently, I calculate the counterfactual CCP using these adjusted profits

for independently owned pharmacies.37

Table 6.2 show how the expected number of independent pharmacy in 2019 is predicted to

change in the counterfactual (CF)- relative to predicted market equilibrium by total market

and socio-demographic characteristics respectively. I find that, in the hypothetical world

in which independent stores in elderly town gets a 10% subsidy associated with Medicare

beneficiaries, markets would have on average 20% more independent pharmacy than the

observed number of pharmacies.

To further illustrate how pharmacy accessibility within town would have been improved,

I compare the predicted pharmacy accessibility and pharmacy accessibility under scenario 2

in Table 6.3. On average, elderly towns in 2019 with limited pharmacy accessibility would

decrease by 5.7% or change in rates by 16.71 %. Interestingly, the effects are largest in

locations where the share of minority groups is above 10%, which implies that minority

groups will get the most benefits from this suggested subsidy program.

7 Conclusion

This paper successfully addresses the challenge of combining static discrete games with dou-

ble machine learning (DML) in the context of high-dimensional data. By introducing DML

static game estimators, researchers can now obtain reliable inferences, even when dealing

with high-dimensional nuisance parameters estimated using machine learning techniques.

36Specifically, I reference the average gross markup for independent pharmacies, which stands at 22
percent according to the 2020 National Community Pharmacists Association (NCPA) Digest. This margin
typically fluctuates between 22-24 percent annually. Further, I discovered that 30 percent of sales come
from Medicare Part D. Taking these factors into account, subsidies result in a 13.5 percent increase in latent
profits (0.135 = 1/0.22 (gross mark-up rate) * 0.3 (sales share of Medicare) * 0.1 (subsidy rate).

37This framework operates within a partial equilibrium context. It does not consider potential reactions
from chain pharmacies or their eligibility for this subsidy program.
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Table 6.2: Expected Number of Stores under Counterfactual Scenario 2 (Year: 2019)

(Average) Independent Pharmacy Counts
Predicted CF S2 △ △%

Total Markets 0.672 0.820 0.148 22.02
Total Population
Below median (1,226) 0.588 0.686 0.098 16.67
Above median (1,226) 0.780 0.952 0.172 22.05

Prop. Vehicle=0
Below median (0.055) 0.668 0.812 0.144 21.56
Above median (0.055) 0.690 0.828 0.138 20.00

Prop. under Poverty Line
Below median (0.12) 0.640 0.796 0.156 24.38
Above median (0.12) 0.736 0.844 0.108 14.67

Share of Age over 65
Below median (0.24) 0.682 0.796 0.114 16.72
Above median (0.24) 0.686 0.844 0.158 23.03

Presence of Chain Pharmacy in 2000
No chain pharmacy within 15 miles 0.700 0.842 0.142 20.29
Chain pharmacy present within 15 miles 0.614 0.718 0.104 16.93

Minority Group
Below 10% 0.682 0.82 0.138 20.23
Above 10% 0.732 0.834 0.102 13.93
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Table 6.3: Pharmacy Accessibility under Counterfactual Scenario 2 (Year: 2019)

Limited Pharmacy Access in Towns (%)
Predicted CF S2 △ △%

Total Markets 34.1 28.4 -5.7 -16.71
Total Population
Below median (1,226) 40.0 35.3 -4.7 -11.76
Above median (1,226) 28.2 21.6 -6 -23.61

Prop. Vehicle=0
Below median (0.055) 35.7 31 -4.7 -13.19
Above median (0.055) 32.5 25.9 -6.6 -20.48

Prop. under Poverty Line
Below median (0.12) 38 31.7 -6.28 -13.45
Above median (0.12) 30.2 25.1 -5.1 -16.88

Share of Age over 65
Below median (0.24) 33.7 29.0 -4.7 -13.95
Above median (0.24) 34.5 27.8 -6.6 -19.32

Presence of Chain Pharmacy in 2000
No chain pharmacy within 15 miles 32.9 27.1 -5.8 -17.65
Chain pharmacy present within 15 miles 39.6 34.3 -5.2 -13.16

Minority Group
Below 10% 35.6 30 -5.6 -15.98
Above 10% 16.6 10 -6.6 -40.00
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The results highlight the robustness of the proposed DML static game estimator, which

exhibits
√
N -consistency and asymptotic normality. Simulation studies demonstrate the

proposed estimators’ effectiveness in the unbiased estimation of structural parameters and

the validity of inferences.

In empirical application, the study finds that machine learning methods can be used to

improve the estimation of structural parameters in models of strategic interaction among

independent pharmacies. The study’s counterfactual simulations suggest that new chain

pharmacy entries can account for 40% of the variation in the closed independent pharmacies

between 2000 and 2019. The second counterfactual also suggest that a 10% subsidy from

pharmacy sales associated with Medicare beneficiaries to pharmacies could eliminate limited

pharmacy access in 16% of towns.

There are several avenues for future research. One possibility is to relax the of as-

sumptions about incomplete information structures (e.g., Grieco 2014), building upon the

DML framework. Another possibility is to extend DML with dynamic games, utilizing zero-

jabocian properties in efficient pseudo-likelihood (E-NPL) methods Dearing and Blevins

(2019). These topics are left open for future research.
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A Appnedix: Proof

Proof of Theorem 3.1.

Identification condition:

E[ψ(wi; θ0, η0)] = E
[
(zi − E[zi|xi]) [ai − Λ(γ−i, θ, β)]︸ ︷︷ ︸

Part A

−α[a−i − γ−i]︸ ︷︷ ︸
Part B

]

Part A is equal to zero by the following.

E[zi[ai − Λ(γ−i, θ, β)]]− E[E[zi|xi](ai − Λ(γ−i, θ, β))]

= E[E[zi|xi](ai − Λ(γ−i, θ, β))] (∵ Equation 2.14)

= E[E[zi|xi](E[ai|xi]− Λ(γ−i, θ, β))] (∵ Law of iterated expectations)

= 0 (∵ Λ = Pr(ai = 1|xi))

Part B is equal to zero by the following.

E[α[a−i − γ−i(d−i, xi)] = E[α(E[a−i|d−i, xi]− γ−i)] (∵ Law of iterated expectations)

= 0

The conclusion follows as the sum of parts A and B equals zero.

Neyman orthogonality condition:

∂γ−i
E[ψ(wi; θ0, η0)][γ−i − γ−0i] = E[(−µzΛ(1− Λ)θγ + α)(γ−i − γ−i0)]

= E[(−µzΛ(1− Λ)θγ + µzΛ(1− Λ)θγ)(γ−i − γ−i0)] = 0

∂βE[ψ(wi; θ0, η0)][β − β0] = E [−µzΛ(1− Λ)xi · (β − β0)]

= −E[fiuixi · (β − β0)] = 0 (∵ Equation 3.4)

∂µzE[ψ(wi; θ0, η0)][µz − µ0z] = E[(ai − Λ)(µz − µ0z)] = 0

Q.E.D.

Proofs of Theorem 3.2.

For clarity, I re-state the Assumption made in Chernozhukov et al. (2022) and verify that

these assumptions are satisfied.

Assumption A.1 (Mean-Square Consistency).
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E[||ψ(W, θ0, γ0, α0)||2] <∞ and

(i)

∫
||m(w, γ̂ℓ, θ0)−m(w, γ0, θ0)||2F0(dw)

p−−→ 0,

(ii)

∫
||ϕ(w, γ̂ℓ, α0, θ0)− ϕ(w, γ0, α0, θ0)||2F0(dw)

p−−→ 0,

(iii)

∫
||ϕ(w, γ0, α̂ℓ, θ̃ℓ)− ϕ(w, γ0, α0, θ0)||2F0(dw)

p−−→ 0.

To give mild mean-square consistency conditions for γ̂ℓ and (α̂ℓ, θ̃ℓ) separately. I denote

∆̂ℓ(w) := ϕ(w, γ̂ℓ, α̂ℓ, θ̃ℓ)− ϕ(w, γ0, α̂ℓ, θ̃ℓ)− ϕ(w, γ̂ℓ, α0, θ0) + ϕ(w, γ0, α0, θ0).

Assumption A.2 (Convergence Rate for Interaction Remainder).

For each ℓ = 1, ..., L,
√
n

∫
∆̂ℓ(w)F0(dw)

p−−→ 0.

and ∫
||∆̂ℓ(w)||2F0(dw)

p−−→ 0.

Assumption A.3 (Convergence Rates for γ).

For each ℓ = 1, ..., L,

||γ̂ℓ−γ0|| = op(n
−1/4) and ||ψ̄(γ, α0, θ0)|| ≤ C||γ−γ0||2 for all γ with ||γ−γ0|| small enough.

Assumption A.4.

For each ℓ = 1, ...L,∫
||m(w, γ̂ℓ, θ̃ℓ)−m(w, γ̂ℓ, θ0)||2F0(dw)

p−−→ 0 and

∫
||∆̂ℓ||2F0(dw)

p−−→ 0

Assumption A.5 (Convergence of the Jacobian). G exsits and there is a neighborhood N

of θ0 and || · || such that (i) for each ℓ, ||γ̂hℓ−γ0||
p−−→ 0; (ii) for all ||γ̂ℓ−γh0|| small enough,

m(W, γ, θ) is differentiable in θ on N with probability approaching 1 and there are C > 0

and d(W, γ) such that, for θ ∈ N and ||γ̂ − γ0|| small enough,∣∣∣∣∣
∣∣∣∣∣∂m(W, γ̂, θ̂)

∂θ
− ∂m(W, γ̂, θ0)

∂θ

∣∣∣∣∣
∣∣∣∣∣ ≤ d(W, γ)||θ̂ − θ0||1/C ; E[d(W, γ̂)] < C

(iii) For each ℓ = 1, ...L, j and k,
∫
|∂gj(w, γ̂, θ0)/θk − ∂gj(w, γ0, θ0)/∂k|F0(dw)

p−−→ 0
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B Proof

Proof of Assumption A.1:

Assumption A.1 part (i) is implied by Assumption 3.2. For k = 1, .., K, let ϕk(w, γk, αk) =

αk[y−ik − γk] and

ϕ(w, γ, α, θ) =
K∑
k=1

ϕk(w, γk, αk, θ).

For part (ii), by the assumption 3.2∫
||ϕ(w, γ̂ℓ, α, θ0)− ϕ(w, γ0, α0, θ0)||2F0(dw) =

∫
||α2

0[γ̂hℓ − γh0]
2||F0(dw)

≤ C||γ̂kℓ − γh0||2
p−−→ 0.

Assumptions A.1 part (ii) holds by the triangle inequality.

For part (iii), again, by the assumption 3.2∫
||ϕ(w, γ0, α̂, θ̃)− ϕ(w, γ0, α0, θ0)||2F0(dw) =

∫
||(α̂hℓ − αh0)

2[a−i − γh0]
2||F0(dw)

≤ C||αhℓ − αh0||2
p−−→ 0.

Assumptions A.1 part (iii) holds by the triangle inequality.

The following lemma gives a convergence rate for the preliminary naive plug-in estimator

of α̂

Lemma B.1. If Assumption 3.2 holds, then,

θ̂ℓ = θ0 +Op(n
−d1).

Proof of Lemma B.1: Similar to Chernozhukov et al. (2022), the convergence rate for

quasi maximum likelihood would be slower by the convergence rate for nuisance parameters

γ.

Next, the following lemma gives a convergence rate for the unknown function α̂.

Lemma B.2. If Assumption 3.2 holds, then

|α̂kℓ − αh0| = Op(n
−d1)

Proof of Lemma B.2:

|α̂hℓ − αh0| ≤ C|θ̂γ − θ0|+ |γ̂hℓ − γh0|+ |µ̂ℓ − µ0| ≤ Op(n
−d1).(∵ triangle inequality).
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Proof of Assumption A.2: For part (i), I observe that

∆̂ℓ =
∑
h

(α̂hℓ − αh0)(γ̂hℓ − γh0)

Then, by the conclusion of Lemma B.2 and assumption 3.1,

√
n

∫
||∆̂ℓ||F0(dw) ≤

∑
h

√
n||α̂hℓ − αh0|| ||γ̂hℓ − γh0||

= Op(
√
nn−d1 n−d1) = op(1) (∵ −1

2
< −2d1 < −1) by the assumption ???.

For part (ii),

∫
||∆̂||2F0(dw) ≤

∑
h

||α̂hℓ − αh0||2||γ̂hℓ − γh0||2 = Op(n
−2d1) = op(1)

It follows that triangle inequality.

Proof of Assumption A.3: The first condition follows by assumption 3.1 for Lasso and

other machine learning methods. For the second condition, taking Taylor approximation for

nuisance parameters γ̂ = (γ̂−ik, µ̂, β̂):

ψ̄(w, γ̂, α0, θ0) :=

∫
µ̂{ai − Λ(β̂, θ, γ̂−i)}+

∫
αk[a−i − γ̂−i]F0(dw),

=

∫
(µ̂− µ0)[y − Ĝ]F0(dw) +

∫
µ̂Ĝ′(β̂ − β0)F0(dw) +

∫
µ̂Ĝ′(γ̂−i − γ−i0)F0(dw)

≤ Op(n
−2d1) +Op(n

−2d1) +Op(n
−2d1) = Op(n

−2d1) = C||γ̂ − γ0||2.

Proof of Assumption A.4: Similar to Chernozhukov et al. (2022), the first condition

of Assumption 4 can be deduced from the convergence of the probabilities towards 1 and

the uniform boundedness of the γ̂hℓ. The second condition follows by the proof of part ii) in

Assumption A.3.

Proof of Assumption A.5: Following Chernozhukov et al. (2022), Assumption 5 can

be deduced from the previously given boundedness properties. Finally, the conclusion follows

by Theorem 9 in Chernozhukov et al. (2022). Q.E.D.
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Proof of Theorem 3.3. Identification condition:

E[ψ(wi; θ0, η0)] = E
[
(zi − E[zi|xi]) [ai − Λ(γ−i, θ, β)]︸ ︷︷ ︸

Part A

−
∑
a−i

∏
s ̸=i,−i

α−i[a−i − γ−i]︸ ︷︷ ︸
Part B

]

Part A is equal to zero by the following.

E[zi[ai − Λ(γ−i, θ, β)]]− E[E[zi|x](ai − Λ(γ−i, θ, β))]

= E[E[zi|x](ai − Λ(γ−i, θ, β))] (∵ The original moment condition)

= E[E[zi|x](E[ai|di, dx, x]− Λ(γ−i, θ, β))] (∵ Law of iterated expectations)

= 0 (∵ Λ = Pr(ai = 1|di, dx, x))

Part B is equal to zero by the Law of iterated expectations.

E[
∏

s ̸=i,−i

α−i[a−i − γ−i(d−i, di, dx)] = E[E[
∏

s ̸=i,−i

α−i|d−i, di, dx][E[a−i|d−i, di, dx]− E[a−i|d−i, di, dx]]

= 0

The conclusion follows as the sum of parts A and B equals zero.

Neyman orthogonality condition:

∂γ−i
E[ψ(wi; θ0, η0)][γ−i − γ−0i] = E[(−

∑
a−i

∏
s ̸=i,−i

(1− γs)− α) · (γ−i − γ−i0)]

= E[(−
∑
a−i

∏
s̸=i,−i

(1− γs) +
∑
a−i

∏
s ̸=i,−i

(1− γs)) · (γ−i − γ−i0)] = 0

∂βE[ψ(wi; θ0, η0)][β − β0] = E [−µzΛ(1− Λ)xi · (β − β0)]

= −E[fiuixi · (β − β0)] = 0 (∵ Equation 3.4)

∂µzE[ψ(wi; θ0, η0)][µz − µ0z] = E[(ai − Λ)(µz − µ0z)] = 0

Q.E.D.
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C Appendix: Supplemental Figure and Tables

Figure C.1: Industry Survey: Main Reason for Choosing Primary Pharmacy

png/survey_indi.png

(a) Independent Pharmacy

png/survey_supermarket.png

(b) Supermarket Pharmacy

png/survey_chain.png

(c) Chain Pharmacy

Sources: Pharmacy Satisfaction Data Summary Report, 2018 Boehringer Ingelheim Pharmaceuticals, Inc

74



Figure C.2: Industry Survey: Main Reason for Switching Primary Pharmacy

png/survey_switching.png

Sources: Pharmacy Satisfaction Data Summary Report, 2018 Boehringer Ingelheim Pharmaceuticals, Inc

75



Figure C.3: Trends in Pharmacy Deserts: Alternative Definition

png/rates_pharmacy_desert_pop.png

(a) Population Weight-Average

png/rates_pharmacy_desert_5miles.png

(b) Within 5 miles

Notes: The figures depict trends in pharmacy deserts using alternative definitions. The units of observation
are based on a three-year moving average of the pharmacy desert indicator for a final sample of 802 town-
ships. In the left panel (a), the pharmacy desert indicator takes a value of 1 if townships have at least one
independent or chain pharmacy, and it’s weighted by the township’s population. In the right panel (b), the
pharmacy desert indicator takes a value of 1 if there are no both independent and chain pharmacies within
a 5-mile radius.
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Tables and Figures

Figure C.4: The distribution of the estimated structural parameters from simulation

Sample Size: 2,000, Dimension of dx: 500

png/data_S5_AUTO_N2000_pdim_500.pdf

Notes: The estimated effect of rival coefficients is based on 500 simulations. The true value of the rival

effects is θ0 = −1.5. The oracle method uses low-dimensional relevant covariates, while the naive plug-in

method uses high-dimensional covariates without correcting for biases. The orthogonal method also uses

high-dimensional covariates like the naive plug-in method, but it corrects for biases using the proposed

Neyman orthogonal method.
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Table C.1: Summary Statistics: Non-Elderly Township

Panel A. Year 2000-2009 Panel B. Year 2010-2019
Variable Frequency Mean S.D Median Min Max Mean S.D Median Min Max
Township-level variables
Pop.a Decennial 2079 1578 1775 114 14388 2087 1592 1826 123 14738
Income per Capitab Decennial 16410 3012 16455 8360 35705 20912 4450 20807 10306 42282
Prop. Age in 6-17c Decennial 0.205 0.03 0.20 0.11 0.32 0.182 0.03 0.18 0.08 0.30
Prop. Age 18-65c Decennial 0.570 0.03 0.57 0.47 0.70 0.583 0.03 0.58 0.48 0.74
Prop. Age over 65 Decennial 0.159 0.03 0.17 0.05 0.20 0.168 0.04 0.17 0.05 0.37
Prop. Female Decennial 0.507 0.02 0.51 0.39 0.62 0.502 0.02 0.50 0.31 0.55
Prop. White Decennial 0.920 0.16 0.98 0.03 1.00 0.907 0.17 0.97 0.03 1.00
Prop. Black Decennial 0.011 0.05 0.00 0.00 0.50 0.011 0.05 0.00 0.00 0.52
Prop. Native Decennial 0.044 0.15 0.00 0.00 0.96 0.047 0.16 0.00 0.00 0.96
Prop. Asian Decennial 0.014 0.03 0.00 0.00 0.23 0.019 0.04 0.01 0.00 0.31
Avg. Household Size Decennial 799 606 687 49 6062 820 619 707 58 6193
Prop. Education 9-12 years Decennial 0.121 0.05 0.11 0.03 0.30 0.091 0.05 0.09 0.00 0.29
Prop. - High School Graduates Decennial 0.399 0.07 0.40 0.19 0.66 0.403 0.08 0.40 0.19 0.59
Prop. Education - Some college Decennial 0.204 0.05 0.20 0.03 0.40 0.211 0.06 0.21 0.00 0.44
Prop. Bachelor Decennial 0.151 0.05 0.15 0.04 0.32 0.189 0.07 0.18 0.04 0.71
Prop. Graduate Decennial 0.040 0.02 0.04 0.00 0.16 0.046 0.03 0.04 0.00 0.27
Prop. Unemployment Decennial 0.055 0.04 0.04 0.00 0.36 0.083 0.06 0.07 0.00 0.46
Prop. Commuting to Work - Vehicle Decennial 0.887 0.07 0.90 0.15 0.97 0.883 0.09 0.90 0.00 1.00
Prop. Commuting to Work - Public transportation Decennial 0.003 0.01 0.00 0.00 0.06 0.004 0.01 0.00 0.00 0.08
Prop. Commuting to Work - Taxi Decennial 0.000 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.03
Prop. Commuting to Work - Walk Decennial 0.045 0.04 0.04 0.00 0.30 0.045 0.05 0.03 0.00 0.37
Prop. in Commuting to Work - Motorcycle/Bicycle Decennial 0.013 0.04 0.01 0.00 0.62 0.016 0.04 0.01 0.00 0.61
Prop. Poverty Decennial 0.121 0.07 0.10 0.01 0.40 0.140 0.08 0.13 0.00 0.39
Prop. Housing Vacancy Decennial 0.129 0.11 0.09 0.02 0.62 0.158 0.12 0.12 0.03 0.76
Prop. in Rent Decennial 0.250 0.09 0.24 0.03 0.57 0.260 0.10 0.25 0.06 0.59
Prop. Vehicle = 0 Decennial 0.071 0.06 0.06 0.00 0.54 0.065 0.07 0.05 0.00 0.72
Prop. Vehicle = 1 Decennial 0.309 0.08 0.31 0.04 0.50 0.290 0.09 0.30 0.00 0.51
Prop. Vehicle = 2 Decennial 0.391 0.06 0.39 0.07 0.65 0.381 0.08 0.39 0.06 0.69
Prop. Vehicle = 3 Decennial 0.159 0.05 0.15 0.02 0.34 0.174 0.07 0.17 0.03 0.56
Prop. Vehicle = 4 Decennial 0.048 0.03 0.04 0.00 0.30 0.061 0.04 0.05 0.00 0.31
Pharmacy Desertd Annual 0.342 0.47 0.00 0.00 1.00 0.341 0.47 0.00 0.00 1.00
Ind. Pharmacies (Town)e Annual 0.671 0.55 1.00 0.00 2.00 0.646 0.58 1.00 0.00 2.00
Chain Pharmacies (15 miles)f Annual 0.746 1.12 0.00 0.00 7.00 1.382 1.73 1.00 0.00 7.00

County-level characteristics
Physician Offices Annual 9.425 11.46 5.00 1.00 96.00 9.155 10.66 5.00 1.00 83.00

State-level characteristics
Prop. Insurance Age 18-64g Annual 0.871 0.02 0.87 0.83 0.93 0.873 0.04 0.87 0.79 0.97
Prop. Insurance Age over 65g Annual 0.992 0.01 0.99 0.97 1.00 0.991 0.01 0.99 0.96 1.00

N 2910 2910

Notes: “Non Elderly township” is defined as townships with an age over 65 population ratio lower than 20% in the year 2000. “Decennial” implies that the
census is conducted every ten years. “Annual” indicates that updates are made on a yearly basis. a “Pop.” refers to the total population of each township.
b “Income per Capita” represents the median income of each township. c “Prop.” stands for the proportion of a specific demographic group within the
population. d “Pharmacy deserts” is a binary variable taking the value 1 if there are no available pharmacies within the township. e “Ind. Pharmacy”
denotes the average number of independent pharmacies within the township. f “Chain Pharmacy” denotes the average number of chain pharmacies within
a 15-mile radius of the centroid of township. g “Prop. Insurance” refers to the ratio of the population within each age groups enrolled in health insurance.
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Table C.2: Summary Statistics: Elderly Township

Panel A. Year 2000-2009 Panel B. Year 2010-2019
Variable Frequency Mean S.D Median Min Max Mean S.D Median Min Max
Township-level variables
Pop.a Decennial 1434 725 1307 153 4859 1385 732 1227 117 4745
Income per Capita b Decennial 16808 2206 16721 10022 27227 21345 3417 21202 12156 37437
Prop. Age in 6-17c Decennial 0.176 0.02 0.18 0.09 0.24 0.160 0.03 0.16 0.08 0.25
Prop. Age 18-65c Decennial 0.509 0.04 0.51 0.37 0.65 0.535 0.04 0.54 0.39 0.76
Prop. Age over 65 Decennial 0.262 0.05 0.25 0.20 0.48 0.246 0.05 0.24 0.10 0.49
Prop. Female Decennial 0.528 0.02 0.53 0.37 0.59 0.518 0.02 0.52 0.29 0.62
Prop. White Decennial 0.972 0.04 0.98 0.55 1.00 0.959 0.06 0.97 0.41 1.00
Prop. Black Decennial 0.002 0.01 0.00 0.00 0.08 0.004 0.01 0.00 0.00 0.17
Prop. Native Decennial 0.010 0.03 0.00 0.00 0.43 0.013 0.04 0.00 0.00 0.53
Prop. Asian Decennial 0.008 0.02 0.00 0.00 0.16 0.012 0.02 0.01 0.00 0.25
Avg. Household Size Decennial 605 302 560 74 2189 597 306 544 49 2079
Prop. Education 9-12 years Decennial 0.101 0.03 0.10 0.04 0.22 0.076 0.04 0.07 0.00 0.23
Prop. High School Graduates Decennial 0.379 0.06 0.38 0.17 0.57 0.389 0.07 0.39 0.13 0.59
Prop. Some college Decennial 0.211 0.04 0.21 0.12 0.35 0.220 0.05 0.22 0.10 0.53
Prop. Bachelor Decennial 0.163 0.04 0.16 0.04 0.31 0.204 0.06 0.20 0.03 0.37
Prop. Graduates Decennial 0.040 0.02 0.04 0.00 0.13 0.044 0.02 0.04 0.00 0.17
Prop. Unemployment Decennial 0.045 0.03 0.04 0.00 0.23 0.060 0.04 0.05 0.00 0.37
Prop. Commuting to Work - Vehicle Decennial 0.867 0.05 0.88 0.60 0.97 0.868 0.07 0.88 0.47 1.00
Prop. Commuting to Work - Public transportation Decennial 0.002 0.00 0.00 0.00 0.04 0.004 0.02 0.00 0.00 0.24
Prop. Commuting to Work - Taxi Decennial 0.000 0.00 0.00 0.00 0.01 0.000 0.00 0.00 0.00 0.03
Prop. Commuting to Work - Walk Decennial 0.074 0.04 0.07 0.00 0.35 0.067 0.05 0.06 0.00 0.32
Prop. Commuting to Work - Motobicycle Decennial 0.010 0.01 0.01 0.00 0.12 0.015 0.02 0.01 0.00 0.10
Prop. Poverty Decennial 0.101 0.04 0.09 0.03 0.32 0.131 0.07 0.12 0.00 0.47
Prop. Housing Vacancy Decennial 0.133 0.11 0.10 0.02 0.73 0.162 0.12 0.13 0.03 0.76
Prop. in Rent Decennial 0.249 0.07 0.24 0.04 0.47 0.271 0.07 0.26 0.06 0.53
Prop. Vehicle = 0 Decennial 0.076 0.03 0.07 0.00 0.22 0.062 0.04 0.06 0.00 0.25
Prop. Vehicle = 1 Decennial 0.349 0.05 0.35 0.10 0.53 0.325 0.07 0.33 0.00 0.57
Prop. Vehicle = 2 Decennial 0.382 0.05 0.38 0.22 0.50 0.380 0.06 0.38 0.19 0.67
Prop. Vehicle = 3 Decennial 0.138 0.04 0.14 0.02 0.29 0.161 0.06 0.15 0.02 0.42
Prop. Vehicle = 4 Decennial 0.040 0.02 0.04 0.00 0.26 0.049 0.03 0.04 0.00 0.18
Pharmacy Desertd Annual 0.178 0.38 0.00 0.00 1.00 0.224 0.42 0.00 0.00 1.00
Ind. Pharmacies (Town)e Annual 0.841 0.52 1.00 0.00 2.00 0.715 0.58 1.00 0.00 2.00
Chain Pharmacies (15 miles)f Annual 0.357 0.78 0.00 0.00 6.00 0.676 1.16 0.00 0.00 7.00

County-level characteristics
Physician Offices Annual 5.699 8.90 3.00 1.00 80.00 6.622 10.07 3.00 1.00 80.00

State-level characteristics
Prop. Insurance Age 18-64g Annual 0.878 0.02 0.88 0.83 0.93 0.879 0.04 0.88 0.79 0.97
Prop. Insurance Age over 65g Annual 0.993 0.01 0.99 0.97 1.00 0.991 0.01 0.99 0.96 1.00

N 5110 5110

Notes: “Elderly township” is defined as townships with an age over 65 population ratio higher than 20% in the year 2000. “Decennial” implies that the
census is conducted every ten years. “Annual” indicates that updates are made on a yearly basis. a “Pop.” refers to the total population of each township.
b “Income per Capita” represents the median income of each township. c “Prop.” stands for the proportion of a specific demographic group within the
population. d “Pharmacy deserts” is a binary variable taking the value 1 if there are no available pharmacies within the township. e “Ind. Pharmacy”
denotes the average number of independent pharmacies within the township. f “Chain Pharmacy” denotes the average number of chain pharmacies within a
15-mile radius of the centroid of the township. g “Prop. Insurance” refers to the ratio of the population within each age group enrolled in health insurance.
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Figure C.5: (Average) Number of Independent/Chain Pharmacies between 2000-2019 by
Age Group

png/distance_numbers_15_L.png

(a) Non Elderly Township

png/distance_numbers_15_H.png

(b) Elderly Township

Notes:
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Figure C.6: Distribution of Market Structure of Independently-Owned Pharmacy by Age
Group

png/market_structure_numbers_L.png

(a) Non Elderly Township

png/market_structure_numbers_H.png

(b) Elderly Township

Notes:
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Figure C.7: More Event Study: The effects of chain pharmacy entry on local independent
pharmacy (Full Samples)

png/Appendix_full.png

Note: Coefficient plots from event-study difference-in-differences analyses that regress the num-

ber of independent pharmacies in a township on year fixed effects, county fixed effects, control

variables, and market× year fixed effects. The sample consists of 802 townships between 2000 and

2019. The omitted baseline period is t = −1, which is the last pre-treatment period. Standard

errors are clustered at the county level and error bars represent 95 confidence intervals.
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Figure C.8: Event Study: The effects of chain pharmacy entry on local independent
pharmacy (Samples: Non Elderly Township)

png/TWFE_L.png png/Appendix_L.png

Note: Coefficient plots from event-study difference-in-differences analyses that regress the num-

ber of independent pharmacies in a township on year fixed effects, county fixed effects, control

variables, and market× year fixed effects. The sample consists of 291 townships between 2000 and

2019. The omitted baseline period is t = −1, which is the last pre-treatment period. Standard

errors are clustered at the county level and error bars represent 95 confidence intervals.

Figure C.9: Event Study: The effects of chain pharmacy entry on local independent
pharmacy (Samples: Elderly Township)

png/TWFE_H.png png/Appendix_H.png

Note: Coefficient plots from event-study difference-in-differences analyses that regress the num-

ber of independent pharmacies in a township on year fixed effects, county fixed effects, control

variables, and market× year fixed effects. The sample consists of 511 townships between 2000 and

2019. The omitted baseline period is t = −1, which is the last pre-treatment period. Standard

errors are clustered at the county level and error bars represent 95 confidence intervals.
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Table C.3: Pharmacy Store Opening Costs (Example)

Item Description Expected Cost($)

Building
Permits Construction, including electrical, plumb-

ing, architect drawing/building, plumbing
& electrical permits, cost of building ma-
terial and supplies

2,000

Construction Bathroom refresh, drywall, electrical,
plumbing, pharmacy and clinic sink, paint

25,000

Pharmacy/clinic outfit Cabinetry, countertops, shelving, storage,
medication fridge

20,000

Controlled medsafe Purchase and bolted to floor 5,000
Shelving Store perimeter wall 10,000-15,000
Signage For exterior (marketing) and interior

(location of products) pharmacy drop
off/pick up, outside boxed sign, in-store
signage

5,000

Inventory
Furniture Waiting area 2,000
Pharmacy supplies Vials, labeling, stationery, compounding

supplies, paper
2,000

Electronic
Electronic items Computers, cash register, phone sys-

tem, TV, fax machine dispensing system,
phones/fax/printer/cash register, ATM
machines

15,000

Cable services Comcast internet, phone (3 lines), TV ser-
vices connection

500

Other
Insurance Building, workers comp, Professional Lia-

bility
250

Security Gates for pharmacy, blinds for clinic, re-
mote alarm, camera system

15,000

Advertising/Printing Multi-language promo material, busi-
ness cards, leaflets, patient education,
newspaper advertisements (American,
Chinese/Vietnamese papers), calen-
dars/mugs/etc

Total Costs 107,750-112,750

Source: Elabed et al. (2016)
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Table C.4: Past/Current Chain Pharmacies and the Number of Independent Pharmacies

(1)
#. Independent Pharmacy Within Town

I(Entry of Chain =1 at t -0.103∗∗∗

(0.0118)

I(Entry of Chain =1 at t− 1 -0.0134
(0.00942)

Township FE Yes
Year FE Yes
Market × Year FE Yes
Controls Yes
Observations 16,040
Mean of Dep. Variable 0.735
Adjusted R2 0.547

Note Estimates are from fixed effects regression of the new entry of independent
pharmacies outside of township but within 10 miles on the number of independent
pharmacies in township m and year t. Significance levels are denoted by + p<0.10,
* p<0.05, ** p<0.05.*** p<0.01.

Table C.5: Confusion Matrix

(a) Elderly Town

Actual
Predicted Stay Out Stay In
Stay Out 12,412 (0.608) 1,130 (0.055)
Stay In 78 (0.004) 6,780 (0.332)
Total N: 20,440 12,490 (0.6111) 7,950 (0.389)

(b) Non-Elderly Town

Actual
Predicted Stay Out Stay In
Stay Out 7,773 (0.668) 741 (0.064)
Stay In 34 (0.003) 3,092 (0.266)
Total N: 11,640 7,807 (0.671) 3,833 (0.329)
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Table C.6: Full Results for Bajari et al. (2010b)

(1) (2)
Elderly Town Non-Elderly Town

Rival independent pharmacies -5.420∗∗∗ -4.000∗∗∗

(0.499) (0.685)

Chain Pharmacies within 15 mi -0.882∗∗∗ -0.269∗∗∗

(0.0848) (0.0604)

Store’s Employment 0.592∗∗∗ 1.865∗∗∗

(0.165) (0.318)

Total Pop. 1.229∗∗∗ -0.0878
(0.180) (0.194)

Income Per Capita 0.384 -0.941∗

(0.316) (0.477)

Physician Offices 0.205∗ 0.0160
(0.0875) (0.139)

Prop. Age over 65 -0.262 9.843∗∗∗

(1.348) (2.725)

Prop. Female -1.125 15.96∗∗

(3.011) (5.802)

Prop. Black -8.333 -2.918
(5.695) (6.875)

Prop. - High School Graduates -0.180 -1.664
(0.831) (1.487)

Prop. Unemployement -3.004∗ -0.236
(1.354) (1.570)

Prop. Vehicle = 0 9.540∗∗∗ 3.520∗∗

(1.486) (1.243)

Medicaid Expansion 0.0324 0.0804
(0.0775) (0.0989)

Prop. Insurance Age over 65 -0.519 -15.24∗∗∗

(2.170) (3.711)
County FE Yes Yes
Year FE Yes Yes
Observations 20400 11640
Mean of Dep. Variable 0.388 0.329
Adjusted R2 0.179 0.180
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Figure C.10: ROC in First Stage Estimation of CCP: Elderly Town

png/lroc_first_Low.pdf

(a) Logit
AUC: 0.7766

png/lroc_first_HD1.pdf

(b) XG Boosting
AUC: 0.9592

Notes : ROC denotes receiver operating characteristic curve. AUC denotes the Area under
the ROC Curve.

Table C.7: Results from the Structural Model: Elderly Town

Parameters Variables Bajari et al. (2010b) Plug-in Orthogonal Moments
θγ Rival independent pharmacies -5.420 -7.972 -8.055

(0.685) (0.495)
θc No. of chain pharmacies -1.065 -1.065 -1.138

(within 15 miles) (0.085) (0.057)
Observations 20,400 20,400 20,400
Socio-Economic Interaction No Yes Yes
Dimension of Controls 13 563 563
Counties FE Yes Yes Yes
Year FE Yes Yes Yes

Notes: I use Lasso estimates for Plug-in estimators with cross validated penalty parameters from 5 fold cross
fitting Standard errors are clustered at the county level. Standard errors are in parenthesis.
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Table C.8: Results from the Structural Model
Robustness Check (L = 4)

Parameters Variables Orthogonal Moments Orthogonal Moments
θγ Rival independent pharmacies -8.830 -6.794

(0.355) (0.563)
θc No. of chain pharmacies -1.477 -0.226

(within 15 miles) (0.035) (0.018)
Observations 20,400 11,640
Socio-Economic Interaction Yes Yes
Dimension of Controls 563 563
Counties FE Yes Yes
Year FE Yes Yes

Notes: I use Lasso estimates for Plug-in estimators with cross validated penalty parameters from 5 fold cross
fitting Standard errors are clustered at the county level. Standard errors are in parenthesis.

Table C.9: Goodness of Fit: By Socio-Economic Characteristics

(Average) Independent Pharmacy Counts
Observed Predicted

Total Markets 0.684 0.672
Total Population
Below median (1,226) 0.612 0.588
Above median (1,226) 0.732 0.780
Prop. Vehicle=0
Below median (0.055) 0.632 0.678
Above median (0.055) 0.714 0.690

Prop. under Poverty Line
Below median (0.12) 0.620 0.632
Above median (0.12) 0.726 0.738

Share of Age over 65
Below median (0.24) 0.654 0.682
Above median (0.24) 0.690 0.686

Presence of Chain Pharmacy in 2000
No chain pharmacy within 15 miles 0.814 0.788
Chain pharmacy present within 15 miles 0.440 0.512

Minority Group
Below 10% 0.670 0.682
Above 10% 0.700 0.732

Notes:
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D Appendix: Data Appendix

Table D.1: Description of Datasets

Dataset Source Description

Pharmacy Entry/Exit Data

Data Axle Historical Business

Database

This proprietary dataset, accessible via https://www.dataaxleusa.

com/lp/data-axle/ and the Carnegie Library of Pittsburgh, is pro-

vided by Data Axle - data analytics marketing firm. The dataset en-

compasses 361 million digitized records of historical and contemporary

business establishments from 1997-2021. I collected panel histories of

pharmacies and mapped their addresses to township IDs using census

shapefiles below.

Geographic Information System

2000/ 2010 US Township

(county subdivision) Shapefiles

These shapefiles, available at https://www.census.gov/cgi-bin/

geo/shapefiles/index.php1, outline each township’s boundaries. It

allows me to geocode the addresses of pharmacies and assign township

IDs from the Census data.2

2010 Rural-Urban Commuting

Area (RUCA) Codes

Sourced from https://www.ers.usda.gov/data-products/

rural-urban-commuting-area-codes/documentation/, these

codes define the census classifications for rural areas. I keep pertain-

ing to rural townships.

2000-2010 Township Crosswalk Available at https://www.census.gov/geographies/

reference-files/time-series/geo/relationship-files.2010.

html#list-tab-1709067297, this file details the relationships

between 2010 Census county subdivisions and their 2000 Census

counterparts.

Health-related variables

CBP (County Business Pat-

terns)

Sourced from https://www.census.gov/data/developers/

data-sets/cbp-nonemp-zbp/cbp-api.html, CBP presents data

on county-level business establishments, categorized by North

American Industry Classification System (NAICS) codes. For this

research, I extracted data on physician offices in each county using

the physician’s code (NAICS code: 621111).

Health Insurance Coverage Available at https://cps.ipums.org/cps/index.shtml, the Annual

Social & Economic Supplement of the Current Population Survey pro-

vides data on health insurance enrollment rates at the year-state level,

grouped by age groups 6-17, 18-64, and above 65.

1 On the website, I selected “Year 2010” followed by the “County Subdivisions (township)” layer type,

enabling the download of shapefiles for both 2000 and 2010.
2 In this study, the 2010 shapefiles were utilized for township IDs.

89

https://www.dataaxleusa.com/lp/data-axle/
https://www.dataaxleusa.com/lp/data-axle/
https://www.census.gov/cgi-bin/geo/shapefiles/index.php
https://www.census.gov/cgi-bin/geo/shapefiles/index.php
https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/documentation/
https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/documentation/
https://www.census.gov/geographies/reference-files/time-series/geo/relationship-files.2010.html#list-tab-1709067297
https://www.census.gov/geographies/reference-files/time-series/geo/relationship-files.2010.html#list-tab-1709067297
https://www.census.gov/geographies/reference-files/time-series/geo/relationship-files.2010.html#list-tab-1709067297
https://www.census.gov/data/developers/data-sets/cbp-nonemp-zbp/cbp-api.html
https://www.census.gov/data/developers/data-sets/cbp-nonemp-zbp/cbp-api.html
https://cps.ipums.org/cps/index.shtml


D.1 Construction of Data

To construct my final dataset, I levarage data from various sources, including pharmacy

establishment datasets, market level characteristics, and health-related variables.

To begin with, I created a panel dataset of pharmacies in the Midwest U.S., organized by

township and year. This allowed me to track the openings and closings of both independent

and chain pharmacies over time. The Data Axle database provides data on pharmacies from

1997 to 2021.

Next, I defined the market boundaries for each pharmacy using the 2010 U.S. Census

townships. I used the 2010 census boundaries for consistency, even though they have changed

slightly over time.

To focus on rural areas, I used the census’s definition of rural territories based on the

RUCA. I used Python’s geopandas tool to identify rural townships that don’t overlap with

urban census tracts derived from RUCA. I then used the 2000-2010 township crosswalk

dataset to maintain the townships in line with the 2010 shapefiles.

Once I had a definitive list of rural townships, I used geopandas for geocoding. I used

Yahoo Bing’s reverse geocoding feature to translate pharmacy addresses into their corre-

sponding longitude and latitude coordinates. I then aligned each independent pharmacy

with its corresponding township ID.

To find out how many chain pharmacies are within a certain distance of each township,

I first found the center of each township. Then, I drew circles around each township with

radius of 5 to 30 miles. I counted the number of different types of chain pharmacies in each

circle to get an exact count of the chain pharmacies within the specified distances. After

the data-cleaning process, for each township, I have independent pharmacies with number

of chains within 5-30 miles.

D.2 Market level characteristics

I also collect market-level data on a pool of demographic characteristics from the Census and

ACS at the township level. This data allows me to estimate the latent profits of independent

stores, as it proxies for both the demand for prescriptions and the costs of operating stores.

Note that the decennial census was released in 2000 and 2010 during my sample periods, so

most market-level characteristics are decennial. I list a full list of the demographic variables’

geographic units and their frequencies in Table and Table .
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D.3 Health related variables

To account for potential time-varying in prescription demands, I incorporate the number

of physicians per county per year and health insurance enrollment rates per state per year,

drawing data from the Annual Social & Economic Supplement of the Current Population

Survey program. In addition, I include “Medicaid Expansion” dummy variable38. This

variable is assigned a value of 1 in a given year if the state expanded Medicaid coverage

to nearly all adults with incomes up to 138% of the Federal Poverty Level ($20,120 for an

individual in 2023).

38Source: available at https://www.kff.org/medicaid/issue-brief/

status-of-state-medicaid-expansion-decisions-interactive-map/
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